Cerium Containing Bioactive Glasses: A Review.

ACS Biomater Sci Eng

Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.

Published: September 2021

Bioactive glasses (BGs) for biomedical applications are doped with therapeutic inorganic ions (TIIs) in order to improve their performance and reduce the side effects related to the surgical implant. Recent literature in the field shows a rekindled interest toward rare earth elements, in particular cerium, and their catalytic properties. Cerium-doped bioactive glasses (Ce-BGs) differ in compositions, synthetic methods, features, and assessment. This review provides an overview on the recent development of Ce-BGs for biomedical applications and on the evaluation of their bioactivity, cytocompatibility, antibacterial, antioxidant, and osteogenic and angiogenic properties as a function of their composition and physicochemical parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441972PMC
http://dx.doi.org/10.1021/acsbiomaterials.1c00414DOI Listing

Publication Analysis

Top Keywords

bioactive glasses
12
biomedical applications
8
cerium bioactive
4
glasses review
4
review bioactive
4
glasses bgs
4
bgs biomedical
4
applications doped
4
doped therapeutic
4
therapeutic inorganic
4

Similar Publications

Continuous microenvironment modulation is an ongoing challenge in wound dressing, which includes excessive exudate absorption, oxygen delivery, bacterial inhibition and angiogenesis. Herein, we developed an construction strategy to fabricate a self-retaining double-layered wound dressing, where the top layer precursor was composed of Ca-containing polyvinyl butyral (PVB) solution dispersed with hydroxypropyl methylcellulose (HPMC) particles, and the bottom one consisted of sodium alginate (Alg) solution blended with Ag-doped mesoporous bioactive glass powders (Ag-MBG). When in use, both precursors were simultaneously squeezed out from the twin nozzles connected to the individual chambers of a twin-chambered syringe, whereby Ca in the top layer rapidly migrated downwards to crosslink Alg in the bottom layer, leading to the formation of an Alg/Ag-MBG (AA) functional hydrogel for filling an irregular wound.

View Article and Find Full Text PDF

Aims: This study aimed to evaluate the enamel remineralization effect of fluoride-incorporated bioactive glass (F-BG) toothpaste on artificial subsurface caries in primary teeth.

Materials And Methods: Forty sound primary maxillary incisors were subjected to a demineralizing solution for four days to induce artificial enamel caries. The teeth were randomly divided into four experimental groups ( = 10 per group): Group I, F-BG toothpaste (530 ppm fluoride) (BiominF); Group II, 0.

View Article and Find Full Text PDF

Measurement of Fluoride Ion Release From Restorative Material Using an Ion-Selective Electrode and Ultraviolet-Visible Light Spectrophotometer.

J Int Soc Prev Community Dent

December 2024

Department of Environmental Science, School of Life Sciences, Mysuru, JSS Academy of Higher Education and Research, Mysore, Karnataka, India.

Background: Importance of fluoride in dental restorative materials for preventing secondary caries. Several commercially available tooth-colored dental restorative materials, such as glass ionomer cement, resin composites, and compomers were used for this study.

Aim: To evaluate the amount of fluoride release from tooth-colored restorative materials [Conventional Glass Ionomer Cement (GC Fuji II)], Resin-modified Glass Ionomer Cement (ACTIVA BioACTIVE-RESTORATIVE), and Giomer (BEAUTIFIL II LS)] using ion-selective electrode (ISE) and spectrophotometer using zirconyl alizarin red dye method.

View Article and Find Full Text PDF

Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.

View Article and Find Full Text PDF

The objective of this study was to tailor an osteoinductive scaffold for alveolar bone regeneration and around immediately placed implants in extraction sockets of dogs. Tailored amorphous multiporous bioactive glass (TAMP -BG) was prepared and characterized for bioactivity and response of human alveolar bone marrow mesenchymal stem cells (hABMSCs). Extraction sockets of twenty-two male mongrel dogs received TAMP-BG in the right side around implant in the distal socket of the mandibular fourth premolar (P4), while the adjacent empty mesial socket of the same tooth was filled with the same graft.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!