Circular RNA (circRNA) is a type of endogenous, high‑stability, noncoding RNA. circRNAs exhibit various biological functions, and are involved in physiological and pathological processes occurring in various diseases, including cancers. They can not only act as microRNA and protein sponges, but also interact with proteins, translated peptides, and transcriptional and translational regulators, and compete with pre‑mRNA splicing. Chemotherapy is one of the most important types of cancer treatment. However, the resistance of cancer cells to chemotherapy is a leading reason for the failure of chemotherapy. It has been reported that circRNAs play important roles in cancer resistance via a number of mechanisms. The functions of the circRNAs provide insight into their roles in chemoresistance pathways. In addition, some circRNAs may serve as novel biomarkers for the diagnosis and prognosis of cancer resistance. Obtaining improved understanding of the molecular regulatory networks featuring circRNAs in tumors and searching for markers for the diagnosis and treatment of cancer resistance are leading issues in circRNA research. The present review introduced the functions of circRNAs, illustrated the mechanisms underlying drug resistance in cancer, described the contributions of circRNAs to this resistance and discussed the potential application of circRNAs in the treatment of drug‑resistant cancer. In particular, the review aimed to reveal the main mechanisms of circRNAs in cancer drug resistance, including mechanisms involving drug transport and metabolism, alterations of drug targets, DNA damage repair, downstream resistance mechanisms, adaptive responses and the tumor microenvironment. The findings may provide novel therapeutic targets for clinical treatment of cancer chemoresistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2021.8176 | DOI Listing |
Cancer Biol Ther
December 2025
Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.
View Article and Find Full Text PDFDis Esophagus
January 2025
Department of Digestive and Oncological Surgery, Claude Huriez Hospital, Chu Lille, Lille, France.
Background: Malnutrition is common with esophagogastric cancers and is associated with negative outcomes. We aimed to evaluate if immunonutrition during neoadjuvant treatment improves patient's health-related quality of life (HRQOL) and reduces postoperative morbidity and toxicities during neoadjuvant treatment.
Methods: A multicenter double-blind randomized controlled trial (RCT) was undertaken.
Mol Ther
January 2025
Brown Center for Immunotherapy. Indiana University School of Medicine. 975 W. Walnut St., IB554A, Indianapolis, IN 46202. Electronic address:
Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.
Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!