Activation of peroxydisulfate by carbon nanotube for the degradation of 2,4-dichlorophenol: Contributions of surface-bound radicals and direct electron transfer.

Chemosphere

Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; NTU Research Center for Future Earth, National Taiwan University, Taipei, Taiwan. Electronic address:

Published: November 2021

Carbon materials have been used to activate peroxydisulfate (PDS) for the degradation of organic pollutants. The mechanism involved, especially whether radicals are formed in these processes, is still under debate. In this research, multi-walled carbon nanotube (MWCNT) was employed to activate PDS for the removal of 2,4-dichlorophenol (2,4-DCP). The effects of solution pH, PDS concentration, 2,4-DCP concentration, and MWCNT loading on the degradation of 2,4-DCP were investigated. The mechanism was explored via radical scavenging experiments, electron paramagnetic resonance (EPR) and MWCNT surface characterization. The results showed that the rate of 2,4-DCP degradation increased with the increasing solution pH, PDS concentration and MWCNT loading. The presence of OH and SO signals in EPR studies, no inhibitory effect in radical scavenging experiments, and the chlorination of MWCNT observed by X-ray photoelectron spectroscopy (XPS) suggested that surface reactions involving both surface-bound radicals and direct electron transfer were responsible for 2,4-DCP degradation. Reusability tests showed that the surface sites responsible for surface-bound radical formation were poisoned after PDS activation, while those responsible for direct electron transfer remained active after five cycles. This research provided the first in-depth insights for the dual roles of MWCNT in the PDS activation process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131282DOI Listing

Publication Analysis

Top Keywords

direct electron
12
electron transfer
12
carbon nanotube
8
surface-bound radicals
8
radicals direct
8
solution pds
8
pds concentration
8
concentration mwcnt
8
mwcnt loading
8
radical scavenging
8

Similar Publications

Target-regulated AgS/FeOOH heterojunction activity: a direct label-free photoelectrochemical immunosensor.

Mikrochim Acta

January 2025

College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.

Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.

View Article and Find Full Text PDF

Electrochemical Ammonia Synthesis at -Block Active Sites Using Various Nitrogen Sources: Theoretical Insights.

J Phys Chem Lett

January 2025

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

Electrochemical nitrogen conversion for ammonia (NH) synthesis, driven by renewable electricity, offers a sustainable alternative to the traditional Haber-Bosch process. However, this conversion process remains limited by a low Faradaic efficiency (FE) and NH yield. Although transition metals have been widely studied as catalysts for NH synthesis through effective electron donation/back-donation mechanisms, there are challenges in electrochemical environments, including competitive hydrogen evolution reaction (HER) and catalyst stability issues.

View Article and Find Full Text PDF

Impact of carrier capacitance on Geobacter enrichment and direct interspecies electron transfer under anaerobic conditions.

Bioresour Technol

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 China. Electronic address:

Direct interspecies electron transfer (DIET) enhances anaerobic digestion by facilitating electron exchange between electroactive bacteria and methanogenic archaea. While Geobacter species are recognized for donating electrons to methanogens via DIET, they are rarely detected in mixed microbial communities. This study examined various non-electrode biological carriers (zeolite, carbon cloth, activated carbon and biochar) to promote Geobacter cultivation under anaerobic conditions and identify pivotal factors influencing their symbiosis with methanogens.

View Article and Find Full Text PDF

Engineering a wirelessly self-powered neural scaffold based on primary battery principle to accelerate nerve cell differentiation.

Colloids Surf B Biointerfaces

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China. Electronic address:

Electrical stimulation displayed tremendous potential in promoting nerve regeneration. However, the current electrical stimulation therapy required complex traversing wires and external power sources, which significantly limited its practical application. Herein, a self-powered nerve scaffold based on primary battery principle was gradient printed by laser additive manufacturing technique.

View Article and Find Full Text PDF

Subcritical water hydrolysis of eggshell membrane and its physicochemical characteristics.

Food Chem

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, PR China. Electronic address:

The insolubility of eggshell membrane (ESM) limits it application. This study utilized a green process subcritical water (SW), to prepare soluble ESM and compared it with acid hydrolysis. The effect of SW temperature on the yields of total protein, free amino acids, and glycosaminoglycan in the hydrolysate was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!