Carbon fluxes (CO and CH) are important indicators of the response of alpine meadow ecosystems to global climate change. Alpine meadows on the Qinghai-Tibet Plateau are sensitive to climate change. Although the temporal allocation of precipitation can vary, its intensity is expected to increase, and its frequency is expected to decrease in the future. In this study, a manipulative field experiment was conducted to investigate how carbon fluxes are altered in response to moderate and severe changes in the precipitation regime. Fluctuations in CH flux were large under a severely altered precipitation regime (range of -0.048-0.038 mg m h). Severe changes in the precipitation regime significantly reduced soil CH uptake by approximately 54.3%. This was probably affected by the decrease in the dissolved organic carbon concentration and changes in the microbial community (mainly Gammaproteobacteria), which were induced by variation in soil water conditions under various precipitation regimes. Under moderate changes in the precipitation regime, the average value of CO fluxes (ecosystem respiration) was 698.21 ± 35.19 mg m h, which was significantly decreased by 20.7% compared with the control. This likely stems from the suppression of enzyme activity (particularly α-1,4-glucosidase and β-1,4-glucosidase) and the alteration of microbial community structure in this treatment, which led to a decrease in organic matter breakdown and a reduction in the release of CO to the atmosphere. However, CO fluxes were slightly (i.e., not significantly) decreased under the severely altered precipitation regime. Such different responses of CO flux are probably driven by differences in microbial strategies. This study not only increases our understanding of the mechanisms underlying the adaptation of alpine meadow ecosystems to global climate change but also provides new insight into the carbon source/sink functions of alpine meadows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.149604 | DOI Listing |
Landsc Ecol
January 2025
Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden.
Context: The vegetation composition of northeastern North American forests has significantly changed since pre-settlement times, with a marked reduction in conifer-dominated stands, taxonomic and functional diversity. These changes have been attributed to fire regime shifts, logging, and climate change.
Methods: In this study, we disentangled the individual effects of these drivers on the forest composition in southwestern Quebec from 1830 to 2000 by conducting retrospective modelling using the LANDIS-II forest landscape model.
The Asian Needle Ant, (Hymenoptera: Formicidae), has spread throughout a substantial portion of the southeastern United States where it has primarily been restricted to low elevations. We focused on the . invasion in Great Smoky Mountains National Park (GSMNP).
View Article and Find Full Text PDFNew Phytol
January 2025
Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, Mexico.
Along their lengths, stems experience different functional demands. Because bark and wood traits are usually studied at single points on stems, it remains unclear how carbon allocation changes along tip-to-base trajectories across species. We examined bark vs wood allocation by measuring cross-sectional areas of outer and inner bark (OB and IB), IB regions (secondary phloem, cortex, and phelloderm), and wood from stem tips to bases of 35 woody angiosperm species of diverse phylogenetic lineages, climates, fire regimes, and bark morphologies.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
Mineral precipitation is ubiquitous in natural and engineered environments, such as carbon mineralization, contaminant remediation, and oil recovery in unconventional reservoirs. The precipitation process continuously alters the medium permeability, thereby influencing fluid transport and subsequent reaction kinetics. The diversity of preferential precipitation zones controls flow and transport efficiency as well as the capacity of mineral sequestration and immobilization.
View Article and Find Full Text PDFPLoS One
January 2025
University of Washington Herbarium (WTU), Burke Museum, Seattle, Washington, United States of America.
Alpine areas are host to diverse plant communities that support ecosystems through structural and floral resources and persist through specialized adaptations to harsh high-elevation conditions. An ongoing question in these plant communities is whether composition is shaped by stochastic processes (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!