miR-34, whose mimic was used on phase I clinical trial, has been extensively reported since its dysfunction in various cancers including non-small-cell lung cancer (NSCLC). However, the roles of miR-34 family members in the progression of lung squamous carcinoma (SCC) in patients who have occupational-exposure experience are unclear yet. Here, we comprehensively investigated the expression levels of miR-34 family members in SCC patients and compared the roles of them in SCC in vitro and vivo. The results showed that the average levels of miR-34a and miR-34b/c were decreased in patients. The analysis of miR-34a to miR-34b/c levels in patients graded different stages or metastases or recurrence showed that miR-34b/c was reduced earlier and more significantly than miR-34a. In vitro assays demonstrated that both miR-34a and miR-34b/c inhibits SCC cells proliferation, migration and invasion via Notch1 pathway, while miR-34b/c effects more than miR-34a does. As miR-34a was significantly decreased in cancer recurrence, the further analysis of relationship between miR-34a and stem cell adhesion molecular CD44 showed that miR-34a was significantly correlated with CD44 levels in patients. Knockdown of CD44 significantly blocked miR-34a mediated inhibition of cell migration and invasion. Treating the purified CD44 cells with miR-34 overexpression lentivirus inhibited the tumor outgrowth. By contrast, anti-miR-34 facilitated tumor development of CD44 cells. Our study showed that miR-34 family members are negative regulator for SCC development, even though the inhibition is mediated by multiple and complicated signal pathways, which provides theoretical basis for SCC treatment and a biomarker candidate for SCC prognosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2021.111967 | DOI Listing |
Pathol Res Pract
November 2024
Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India. Electronic address:
Gene
February 2025
Departments of Physiology, University of Toronto, Ontario, Canada; Departments of Medicine, University of Toronto, Ontario, Canada. Electronic address:
Obesity is a complex disease marked by increased adiposity and impaired metabolic function. While diet and lifestyle are primary causes, endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), significantly contribute to obesity. BPA, found in plastic consumer products, accumulates in the hypothalamus and dysregulates energy homeostasis by disrupting the neuropeptide Y (NPY)/agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States.
Inhalation exposure to airborne fine particulate matter (aerodynamic diameter: <2.5 µm, PM) is known to cause metabolic dysfunction-associated steatohepatitis (MASH) and the associated metabolic syndrome. Hepatic lipid accumulation and inflammation are the key characteristics of MASH.
View Article and Find Full Text PDFNanoscale Adv
September 2024
Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
Despite recent advancements in cancer therapies, challenges such as severe toxic effects, non-selective targeting, resistance to chemotherapy and radiotherapy, and recurrence of metastatic tumors persist. Consequently, there has been considerable effort to explore innovative anticancer compounds, particularly in immunotherapy, which offer the potential for enhanced biosafety and efficacy in cancer prevention and treatment. One such avenue of exploration involves the miRNA-34 (miR-34) family, known for its ability to inhibit tumorigenesis across various cancers.
View Article and Find Full Text PDFGene
December 2024
Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Centre of Excellence for Advanced SciencesNational Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
MiRNAs are short non-coding RNA molecules that have been shown to affect a vast number of genes at the post-transcriptional level, hence regulating several signaling pathways. Because the miRNA-34 family regulates a number of different signaling pathways, including those linked to cancer, the immune system, metabolism, cellular structure, and neurological disorders, it has garnered a great deal of attention from researchers. Members of the miRNA-34 family have been shown to inhibit tumors in a variety of cancer types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!