Bupleuri Radix, serving as the sovereign medicinal in many antidepressant compound preparations, has been proved effective in treating depression in mice, but its effect on the intestinal flora remains unclear. The present study aimed to investigate the effects of Bupleurum chinense(one of the original materials of Bupleuri Radix) on the behaviors and the diversity of intestinal flora of depressed mice. A depression mouse model was induced by repeated social defeat stress. Specifically, C57 BL/6 J male mice were exposed to the attack from the CD-1 mice. Then, C57 BL/6 J male mice were divided into a depression group and a B. chinense group, with normal saline and B. chinense administered(ig) respectively. Sucrose preference test and tail suspension test were conducted during and after the experiment respectively, to analyze the effects of B. chinense on the behaviors of the depressed mice. The feces were collected after the experiment. The V3-V4 16 S rDNA regions of intestinal flora of mice in each group were sequenced by Ion S5 TMXL for the analysis of the number of operational taxonomic units(OTUs), richness, alpha and beta diversity indexes, and differential phyla and genera. The results indicated that B. chinense could decrease depressive-like behaviors of mice, increase sucrose preference, and shorten the time of immobility in tail suspension test. After B. chinense intervention, the relative abundance of Firmicutes was significantly decreased, while that of Bacteroidetes was increased at the phylum level. At the genus level, the relative abundance of Lactobacillus and Lachnoclostridium decreased(P<0.05), while that of Bacteroides, Alistopes, etc. was elevated(P<0.05). The findings demonstrate that B. chinense can regulate the intestinal flora and improve the depressive-like behaviors of mice with depression.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20210524.703DOI Listing

Publication Analysis

Top Keywords

intestinal flora
20
mice
9
diversity intestinal
8
flora depressed
8
bupleuri radix
8
depressed mice
8
mice depression
8
c57 bl/6
8
bl/6 male
8
male mice
8

Similar Publications

Effects of immersion bathing in Lactobacillus plantarum CLY-05 on the growth performance, non-specific immune enzyme activities and gut microbiota of Apostichopus japonicus.

PLoS One

December 2024

Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China.

In order to study the optimal use of Lactobacillus plantarum in sea cucumber (Apostichopus japonicus), 49 days feeding trial was conducted to determine the influence of immersion bathing in different concentrations of Lactobacillus plantarum CLY-05 on body weight gain rate and non-specific immune activities. The potential effect of CLY-05 on gut microbiota was also analyzed during the immersion bathing at the optimum concentration. The results showed that the body weight growth rate of all bathing groups was higher than that of control.

View Article and Find Full Text PDF

Background: Exposure of critically ill patients to antibiotics lead to intestinal dysbiosis, which often manifests as antibiotic-associated diarrhoea. Faecal microbiota transplantation restores gut microbiota and may lead to faster resolution of diarrhoea.

Methods: Into this prospective, multi-centre, randomized controlled trial we will enrol 36 critically ill patients with antibiotic-associated diarrhoea.

View Article and Find Full Text PDF

Exploring the Gastrointestinal Microbiome of Eurasian Griffon Vultures () Under Rehabilitation in Portugal and Their Potential Role as Reservoirs of Human and Animal Pathogens.

Vet Sci

December 2024

CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.

The Eurasian griffon vulture (), a widely distributed scavenger, plays a crucial role in ecosystem health by consuming decomposing carcasses. Scavengers have adapted to avoid disease from the rotting carrion they feed on, probably through a specialized gut microbiome. This study aimed to characterize the gut microbiome of (n = 8) present in two rehabilitation centers in mainland Portugal and evaluate their potential as reservoirs of pathogens.

View Article and Find Full Text PDF

A Multi-Enzyme Complex That Mitigates Hepatotoxicity, Improves Egg Production and Quality, and Enhances Gut and Liver Health in Laying Hens Exposed to Trace Aflatoxin B.

Toxins (Basel)

November 2024

Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.

Aflatoxin B is a prevalent secondary hazardous metabolite generated by fungus present in feed ingredients and the surrounding environment: enzymes are currently being recognized as an efficient and promising approach to reducing the associated risks. The objective of this study was to assess the effects of varying doses of enzyme complexes on several parameters in laying hens that were exposed to aflatoxin. During an 8-week experiment, a total of 288 Yukou Jingfen No.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) represents an autoimmune condition impacted by a combination of genetic and environmental factors, with the gut microbiome (GMB) being one of the influential environmental factors. Patients with RA display notable modifications in the composition of their GMB, characterised by decreased diversity and distinct bacterial alterations. The GMB, comprising an extensive array of approximately 35,000 bacterial species residing within the gastrointestinal tract, has garnered considerable attention as a pivotal contributor to both human health and the pathogenesis of diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!