Proteins are dynamic entities that intermittently depart from their ground-state structures and undergo conformational transitions as a critical part of their functions. Central to understanding such transitions are the structural rearrangements along the connecting pathway, where the transition state plays a special role. Using NMR relaxation at variable temperature and pressure to measure aromatic ring flips inside a protein core, we obtain information on the structure and thermodynamics of the transition state. We show that the isothermal compressibility coefficient of the transition state is similar to that of short-chain hydrocarbon liquids, implying extensive local unfolding of the protein. Our results further indicate that the required local volume expansions of the protein can occur not only with a net positive activation volume of the protein, as expected from previous studies, but also with zero activation volume by compaction of remote void volume, when averaged over the ensemble of states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395657 | PMC |
http://dx.doi.org/10.1021/jacsau.1c00062 | DOI Listing |
PLoS One
January 2025
Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, United Kingdom.
Diabetic foot, leg ulcers and decubitus ulcers affect millions of individuals worldwide leading to poor quality of life, pain and in several cases to limb amputations. Despite the global dimension of this clinical problem, limited progress has been made in developing more efficacious wound dressings, the design of which currently focusses on wound protection and control of its exudate volume. The present in vitro study systematically analysed seven types of clinically-available wound dressings made of different biomaterial composition and engineering.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
Background: MRI offers quantification of proton density fat fraction (PDFF) and tissue characteristics with T1 mapping. The influence of age, sex, and the potential confounding effects of fat on T1 values in skeletal muscle in healthy adults are insufficiently known.
Purpose: To determine the accuracy and repeatability of a saturation-recovery chemical-shift encoded multiparametric approach (SR-CSE) for quantification of T1 and muscle fat content, and establish normative values (age, sex) from a healthy cohort.
Adv Sci (Weinh)
January 2025
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified.
View Article and Find Full Text PDFEchocardiography
January 2025
Cardiology Department, Unidade Local de Saúde do Alto Ave, Guimarães, Portugal.
Purpose: This study explores the effects of anthracycline chemotherapy (AC) on breast cancer patients, focusing on changes in body composition, advanced echocardiographic parameters at rest and during exercise, and biomarkers; and subsequently assesses whether these parameters are associated with impaired cardiorespiratory fitness (CRF).
Methods: In this prospective study, we evaluated women with early-stage breast cancer undergoing AC at three visits: before AC, 1 month after, and 6 months post-AC.
Results: The study included 32 women with breast cancer, with functional disability increasing from 9.
Adv Sci (Weinh)
January 2025
Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.
Achieving a substantial increase in the ammonia productivity of the Haber-Bosch (HB) process at low temperatures has been a significant challenge for over 100 years. However, the iron catalyst designed over 100 years ago remains at the forefront of this process because it is difficult to exceed the industrial iron catalyst in terms of the ammonia synthesis rate/catalyst volume that determines ammonia productivity in a reactor. Here, a new catalyst with an inverse structure of a supported metal catalyst that consists of metallic iron particles loaded with an aluminum hydride species is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!