The amphiphile PS-750-M generates stable, phosphine ligand-free, and catalytically active ultrasmall Pd(II) nanoparticles (NPs) from Pd(OAc), preventing their precipitation, polymerization, and oxidation state changes. PS-750-M directly interacts with Pd(II) NP surfaces, as confirmed by high-resolution mass spectrometry and IR spectroscopy, resulting in their high stability. The Pd cations in NPs are most likely held together by hydroxides and acetate ions. The NPs were characterized by HRTEM, revealing their morphology and particle size distribution, and by HRMS and IR, providing evidence for NP-amphiphile interaction. The NP catalytic activity was examined in the context of oxidative Mizoroki-Heck-type couplings in water at room temperature. Hot filtration, hot extraction, and three-phase tests indicate heterogeneous catalysis occurring at the micellar interface rather than homogeneous catalysis occurring in the solution. NMR studies indicate that the catalytic activity stems from metal cation-π interactions of the styrene along with transmetalation by the arylboronic acid, followed by insertion and β-H elimination to furnish the coupled product along with the reoxidation of Pd by benzoquinone to complete the catalytic cycle. This method is very mild and sustainable, both in terms of NP synthesis and subsequent catalysis, and shows broad substrate scope while circumventing the need for organic solvents for this important class of couplings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395633PMC
http://dx.doi.org/10.1021/jacsau.0c00087DOI Listing

Publication Analysis

Top Keywords

phosphine ligand-free
8
oxidative mizoroki-heck-type
8
mizoroki-heck-type couplings
8
couplings water
8
water room
8
room temperature
8
catalytic activity
8
catalysis occurring
8
metal-micelle cooperativity
4
cooperativity phosphine
4

Similar Publications

Single-atom heterogeneous catalysts (SACs) are potential, recoverable alternatives to soluble organometallic complexes for cross-coupling reactions in fine-chemical synthesis. When developing SACs for these applications, it is often expected that the need for ligands, which are essential for organometallic catalysts, can be bypassed. Contrary to that, ligands remain almost always required for palladium atoms stabilized on commonly used functionalized carbon and carbon nitride supports, as the catalysts otherwise show limited activity.

View Article and Find Full Text PDF

Organophosphorus compounds are fundamental for the chemical industry due to their broad applications across multiple sectors, including pharmaceuticals, agrochemicals, and materials science. Despite their high importance, the sustainable and cost-effective synthesis of organophoshoryl derivatives remains very challenging. Here, we report the first successful regio- and stereoselective hydrophosphorylation of terminal allenamides using an affordable copper catalyst system.

View Article and Find Full Text PDF

Using heterogeneous single-atom catalysts (SACs) in the Suzuki-Miyaura coupling (SMC) has promising economic and environmental benefits over traditionally applied palladium complexes. However, limited mechanistic understanding hinders progress in their design and implementation. Our study provides critical insights into the working principles of Pd@CN, a promising SAC for the SMC.

View Article and Find Full Text PDF

Palladium-catalyzed cross-couplings of aryl chlorides usually call for bulky, electron-rich ligands such as phosphines or heterocyclic carbenes. We have now found that similarly powerful cross-coupling catalysts are obtained by the reaction of palladium salts with alkynyllithium reagents. The species initially formed in this process was characterized as a dilithium tetraalkinyl palladate complex.

View Article and Find Full Text PDF

Ligand-Free Iron-Catalyzed Construction of C-P Bonds via Phosphorylation of Alcohols: Synthesis of Phosphine Oxides and Phosphine Compounds.

J Org Chem

May 2024

Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China.

An efficient method for the construction of C-P(V) and C-P(III) bonds via the iron-catalyzed phosphorylation of alcohols under ligand-free conditions is disclosed. This strategy represents a straightforward process to prepare a series of phosphine oxides and phosphine compounds in good to excellent yields from the readily available alcohols and P-H compounds. A plausible mechanism is also proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!