Tumor nanovaccines have potential applications in the prevention and treatment of malignant tumors. However, it remains a longstanding challenge in exploiting efficient nanocarriers for inducing potent specifically cellular immune responses. Toward this objective, we herein explore an intensive tumor immunotherapeutic strategy by combining mannosylated nanovaccines and gene regulated PD-L1 blockade for immune stimulation and killing activity. Here, we fabricate a mannose modified PLL-RT (Man-PLL-RT) mediated nanovaccines with dendritic cells (DCs) targeting capacity. Man-PLL-RT is capable of co-encapsulating with antigen (ovalbumin, OVA) and adjuvant (unmethylated cytosine-phosphate-guanine, CpG) by electrostatic interaction. This positively charged Man-PLL-RT/OVA/CpG nanovaccines can facilitate the endocytosis, maturation and cross presentation in DCs. However, the nanovaccines arouse limited inhibition of tumor growth, which is mainly due to the immunosuppressed microenvironment of tumors. Combining tumor nanovaccines with gene regulated PD-L1 blockade leads to an obvious tumor remission in B16F10 melanoma bearing mice. The collaborative strategy provides essential insights to boost the benefits of tumor vaccines by regulating the checkpoint blockade with gene therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379363 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2021.05.036 | DOI Listing |
J Control Release
December 2024
School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China. Electronic address:
Cancer vaccines have garnered considerable interest for cancer immunotherapy. However, their effectiveness is limited by inadequate proliferation, activation, and tumor infiltration of cytotoxic T lymphocytes (CTLs). Inspired by the potent immunostimulatory properties of viral components and the exposure of calreticulin during immunogenic cell death (ICD) triggered by viral infections; in this study, we describe cGAMP@vEVs, a virus-mimicking nanovaccine strategy by engineering tumor cell-derived extracellular vesicles through virus infection, which co-load both personalized and broad antigen repertoire as well as multiple immune adjuvants to potently elicit antitumor immunity.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
Nanovaccines have significantly contributed in the prevention and treatment of diseases. However, most of these technologies rely on chemical or hybrid semibiological synthesis methods, which limit the manufacturing performance advantages and improved inoculation outcomes compared with traditional vaccines. Herein, a universal and purely biological nanovaccine system is reported.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
November 2024
Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA.
The Midwest Aging Consortium (MAC) has emerged as a critical collaborative initiative aimed at advancing our understanding of aging and developing strategies to combat the rising prevalence of age-related diseases. Founded in 2019, MAC brings together researchers from various disciplines and institutions across the Midwestern United States to foster interdisciplinary geroscience research. This report summarizes the highlights of the Fourth Annual Symposium of MAC, which was held at Iowa State University in May 2023.
View Article and Find Full Text PDFBiomater Res
October 2024
Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816 China.
Conventional aluminum adjuvants exhibit limited cellular immunity. Polyinosinic-polycytidylic acid (poly I:C) activates cytoplasmic retinoic acid-inducible gene-like receptor (RLR), triggering strong T cell activation and cellular responses. However, when applied as an adjuvant, its limited endocytosis and restricted cytoplasmic delivery diminish its effectiveness and increase its toxicity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium.
Opioid use disorder - particularly involving fentanyl - has precipitated a public health crisis characterized by a significant increase in addiction and overdose-related deaths. Fentanyl-specific immunotherapy, which aims at inducing fentanyl-specific antibodies capable of binding fentanyl molecules in the bloodstream, preventing their entry in the central nervous system, is therefore gaining momentum. Conventional opioid designs rely on the covalent conjugation of fentanyl analogues to immunogenic carrier proteins that hold the inherent capacity of mounting immunodominant responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!