Background: Transgenic animals have a critical role in the advancement of our knowledge in different fields of life sciences. Along with recent advances in genome engineering technologies, a wide spectrum of techniques have been applied to produce transgenic animals. Tol2 transposase method is one of the most popular approaches that were used to generate transgenic animals. The current study was set out to produce an ornamental fish, which express enhanced green fluorescent protein (EGFP) under control of mylpfa promoter by using Tol2 transposase method.
Materials And Methods: Polymerase chain reaction (PCR) cloning method was performed to insert zebrafish myosin promoter (mylpfa) into Tol2-EGFP plasmid at the upstream of EGFP. In vitro transcription method was used to prepare the transposase mRNA. The Tol2-EGFP plasmid and transposase mRNA were then co-injected into the one-cell stage of zebrafish zygotes. After two days, the fluorescent microscopic analysis was used to select transgenic zebrafishes.
Results: Our data showed that the optimum concentration for recombinant Tol2 vector and transposase mRNA were 50 ng/ul and 100 ng/ul, respectively. The results also revealed that the quality of embryos and quantity of injected construct had the important effects on Tol2 transposase method efficiency.
Conclusion: Data showed that Tol2 transposase is an appropriate method to generate zebrafish transgene. Our finding also showed that mylpfa promoter is a strong promoter that can be used as a selected promoter in the ornamental fish industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344052 | PMC |
http://dx.doi.org/10.31661/gmj.v8i0.1068 | DOI Listing |
Environ Pollut
February 2025
Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka. Electronic address:
Heavy metal contamination is an urgent environmental issue that poses a significant threat to human health and the ecosystem. To mitigate the adverse impacts of heavy metal pollution, the aim of this research was to develop genetically engineered zebrafish as biosensors, which offer a promising alternative for detecting heavy metal exposure, specifically Cd⁺ and Zn⁺. A novel heavy metal-sensitive gene construct metallothionine 2 promoter with DsRed reporter gene (mt2-DsRed2) was synthesized and integrated into zebrafish embryos using a Tol2 transposon transposase system with the transgenic zebrafish line subjected to biosensing applications for Cd and Zn.
View Article and Find Full Text PDFMar Biotechnol (NY)
October 2024
Department of Psychology, University of Illinois, Champaign, IL, 61820, USA.
The common clownfish, Amphiprion ocellaris, is an iconic coral reef fish, ubiquitous in the marine aquarium hobby and useful for studying a variety of biological processes (e.g., mutual symbiosis, ultraviolet vision, and protandrous sex change).
View Article and Find Full Text PDFiScience
August 2024
Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China.
STAR Protoc
September 2024
Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China. Electronic address:
Here, we present a protocol for tissue-specific mutagenesis in zebrafish. We describe the preparation of the Tol2 transposase donor vector containing a U6 promoter that drives the transcription of single-guide RNAs (sgRNAs) and Cas9 under the control of a tissue-specific promoter. We then detail the establishment, identification, and phenotypic analysis of the stable tissue-specific mutagenesis zebrafish line.
View Article and Find Full Text PDFHere we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!