AI Article Synopsis

  • The study aimed to determine how differentially expressed genes (DEGs) influenced by methylation patterns can help predict the prognosis of colon cancer.
  • The researchers analyzed RNA sequencing and DNA methylation data from a large dataset of colon adenocarcinoma cases to identify significant DEGs and their biological roles.
  • Their findings revealed specific hub genes linked to patient survival, indicating these genes could serve as valuable biomarkers for diagnosis and treatment of colon cancer.

Article Abstract

Objective: To identify the value of key differentially expressed genes (DEGs) regulated by differentially methylated regions (DMRs) in predicting the prognosis of human colon cancer.

Materials And Methods: RNA sequencing data and DNA methylation data of 455 colon adenocarcinoma (COAD) cases and 41 normal controls were downloaded from The Cancer Genome Atlas (TCGA). Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by the DAVID database. To identify the hub genes regulated by methylation, univariate Cox and multivariate Cox regression analyses were carried out. A nomogram based on the risk score was built to identify the power of the hub genes to predict prognosis in patients with colon cancer.

Results: A total of 133 DEGs regulated by DMRs were identified through analyzing RNA sequencing data and DNA methylation data from TCGA. GO functional enrichment and KEGG pathway enrichment analysis showed the genes involved in the initiation and progression of colon cancer. Univariate Cox regression analysis and multivariate Cox regression analysis focused on the seven hub genes (, , , , , and ) associated with overall survival, the expression of which negatively correlated with their methylation level. The risk score and nomogram model showed that the hub genes served as potential biomarkers for the prognosis prediction of patients with colon cancer.

Conclusion: Our findings suggest that the DEGs regulated by DMRs are involved in the carcinogenesis and development of colon cancer, and the aberrantly methylated DEGs associated with overall survival of patients may be potential diagnostic and therapeutic targets for colon cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403012PMC
http://dx.doi.org/10.2147/IJGM.S324483DOI Listing

Publication Analysis

Top Keywords

colon cancer
16
hub genes
16
degs regulated
12
cox regression
12
differentially expressed
8
genes
8
expressed genes
8
predicting prognosis
8
prognosis human
8
colon
8

Similar Publications

Filamin A C-terminal fragment modulates Orai1 expression by inhibition of protein degradation.

Am J Physiol Cell Physiol

January 2025

Department of Physiology (Cellular Physiology Research Group),Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003-Caceres, Spain.

Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here we show that full-length FLNA is downregulated in samples from colon cancer patients as well as in the adenocarcinoma cell line HT-29.

View Article and Find Full Text PDF

Colorectal cancer (CRC), as one of the malignant tumors with the highest incidence and mortality rates worldwide in recent years, originating primarily from the mucosal tissues of the colon or rectum, and has the potential to rapidly develop into invasive cancer. Its pathogenesis is complex, involving a multitude of factors including genetic background, lifestyle, and dietary habits. Early detection and treatment are key to improving survival rates for patients with CRC.

View Article and Find Full Text PDF

Background: Devices that help educate young doctors and enable safe, minimally invasive surgery are needed. Eureka is a surgical artificial intelligence (AI) system that can intraoperatively highlight loose connective tissues (LCTs) in the dissected layers and nerves in the surgical field displayed on a monitor. In this study, we examined whether AI navigation (AIN) with Eureka can assist trainees in recognizing nerves during colorectal surgery.

View Article and Find Full Text PDF

In this work, we synthesize a quinoline-based heptamethine cyanine, QuCy7, with sulfonate groups to enhance water solubility. This dye demonstrates exceptional near-infrared absorption beyond 750 nm, accompanied by photothermal properties but low photostability. Encapsulating QyCy7 with polyethylene glycol to form nanopolymer, QuCy7@mPEG NPs, addresses the issue of its photoinstability.

View Article and Find Full Text PDF

The development and homeostasis of intestinal epithelium are mediated by actively proliferating Lgr5+ stem cells, which possess a remarkable self-renewal and differentiation capacity. Recently, our study demonstrated that m6A methylation was essential for the survival of colonic stem cells. Here, we show that METTL3 expression is downregulated in the colon mucosa in ulcerative colitis (UC) patients and strongly associated with the differentiation and maturation of goblet cells during inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!