Purpose: The purpose of this study is to compare and analyze the power spectral changes between subjective cognitive decline (SCD) subjects and normal controls (NC) while checking the preclinical stage of AD in the SCD subjects and to use the derived data for biomarker research that can diagnose early-stage AD in the future.
Methods: We recruited 23 SCD patients and 23 normal control subjects and QEEG analysis including power spectral density (PSD) and source-level analysis were performed. An automated preprocessing procedure and statistical analysis were performed by iSync Brain (iMediSync Inc., Republic of Korea) (https://isyncbrain.com/) using the international standard 10-20 system (19 electrodes).
Results: Absolute PSD, there was no statistically significant difference in all of the EEG power measurements of the 19 channels. In the relative PSD analysis, the average delta band power of the SCD group was significantly higher in Fp2, F4, and F8 than NC. Alpha1 band power of the O1 channel was 22.56±16.05 for the SCD group and 33.19±19.05 for the NC (p-value <0.05). Source-level analysis did not show a statistically significant difference.
Conclusion: SCD subjects showed a partial increase of delta waves in the frontal lobe region and a partial decrease in alpha1, a fast wave in the occipital region, compared to the NC. SCD is considered one of the earliest clinical symptoms of AD and it is predicted to be related to minor nerve damage. We were able to observe the power spectral changes in SCD subjects in this cross-sectional study, a large number of subjects and longitudinal studies are needed to evaluate their predictability for future deterioration such as conversion to MCI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403030 | PMC |
http://dx.doi.org/10.2147/NDT.S320130 | DOI Listing |
Sci Adv
January 2025
QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076 Aalto, Finland.
Reconstructive optoelectronic spectroscopy has generated substantial interest in the miniaturization of traditional spectroscopic tools, such as spectrometers. However, most state-of-the-art demonstrations face fundamental limits of rank deficiency in the photoresponse matrix. In this work, we demonstrate a miniaturized spectral sensing system using an electrically tunable compact optoelectronic interface, which generates distinguishable photoresponses from various input spectra, enabling accurate spectral identification with a device footprint of 5 micrometers by 5 micrometers.
View Article and Find Full Text PDFNanophotonics
January 2025
College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
Grating under auto-collimation configuration with polarization-independent high diffraction efficiency plays an important role in the displacement measurement system, spectral beam combining system and so on. In this paper, we proposed, for the first time, a reflective two-dimensional metal-dielectric grating of which the (-1, -1) order beam is diffracted back along the input light direction, when the incident azimuth angle is 45°. With optimized structure, the (-1, -1) order diffraction efficiencies of transverse electric polarization (TE) and transverse magnetic polarization (TM) are 95.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
Introduction: Color vision deficiency (CVD), a common visual impairment, affects individuals' ability to differentiate between various colors due to malfunctioning or absent color photoreceptors in the retina. Currently available diagnostic tests require a behavioral response, rendering them unsuitable for individuals with limited physical and communication abilities, such as those with locked-in syndrome. This study introduces a novel, non-invasive method that employs brain signals, specifically Steady-State Visually Evoked Potentials (SSVEPs), along with Ishihara plates to diagnose CVD.
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States.
Blink-related oscillations (BROs) are newly discovered neurophysiological brainwave responses associated with spontaneous blinking, and represent environmental monitoring and awareness processes as the brain evaluates new visual information appearing after eye re-opening. BRO responses have been demonstrated in healthy young adults across multiple task states and are modulated by both task and environmental factors, but little is known about this phenomenon in aging. To address this, we undertook the first large-scale evaluation of BRO responses in healthy aging using the Cambridge Centre for Aging and Neuroscience (Cam-CAN) repository, which contains magnetoencephalography (MEG) data from a large sample ( = 457) of healthy adults across a broad age range (18-88) during the performance of a simple target detection task.
View Article and Find Full Text PDFChemphyschem
January 2025
Deutsches Krebsforschungszentrum, Translational Molecular Imaging, Im Neuenheimer Feld 223, 69120, Heidelberg, GERMANY.
Chemical exchange saturation transfer (CEST) improves the sensitivity of NMR but depending on the spin exchange kinetics, it can require substantial RF energy deposition to label magnetization. Potential side effects like RF-induced heating may occur and must be monitored. Here, we explore the parameter space considering not only undesired heating but efficient CEST build-up (depolarization rate), spectral resolution (line width), and subsequent effects like changes in chemical shifts of CEST responses must be considered, too.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!