Muon radiography is a methodology which enables measuring the mass distribution within large objects. It exploits the abundant flux of cosmic muons and uses detectors with different technologies depending on the application. As the sensitive surface and geometric acceptance are two fundamental parameters for increasing the collection of muons, the optimization of the detectors is very significant. Here we show a potentially innovative detector of size and shape suitable to be inserted inside a borehole, that optimizes the sensitive area and maximizes the angular acceptance thanks to its cylindrical geometry obtained using plastic arc-shaped scintillators. Good spatial resolution is obtained with a reasonable number of channels. The dimensions of the detector make it ideal for use in 25 cm diameter wells. Detailed simulations based on Monte Carlo methods show great cavity detection capability. The detector has been tested in the laboratory, achieving overall excellent performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408154PMC
http://dx.doi.org/10.1038/s41598-021-96247-1DOI Listing

Publication Analysis

Top Keywords

cylindrical borehole
4
detector
4
borehole detector
4
detector radiographic
4
radiographic imaging
4
imaging muons
4
muons muon
4
muon radiography
4
radiography methodology
4
methodology enables
4

Similar Publications

Forward modeling the magnetic effects of an inferred source is the basis of magnetic anomaly inversion for estimating subsurface magnetization parameters. This study uses numerical least-squares Gauss-Legendre quadrature (GLQ) integration to evaluate the magnetic potential, anomaly, and gradient components of a cylindrical prism element. Relative to previous studies, it quantifies for the first time the magnetic gradient components, enabling their applications in the interpretation of cylindrical bodies.

View Article and Find Full Text PDF

Borehole strain gauges play a crucial role in geophysical, seismological, and crustal dynamics studies. While existing borehole strain gauges are proficient in measuring horizontal strains within vertical boreholes, their effectiveness in capturing vertical and oblique strains is limited due to technical constraints arising from the cylindrical probe's characteristics. However, the accurate measurement of three-dimensional strain is essential for a comprehensive understanding of crustal tectonics, dynamics, and geophysics, particularly considering the diverse geological structures and force sources within the crustal medium.

View Article and Find Full Text PDF

The interpretation of gravity anomalies is crucial for identifying subsurface mineralized targets and understanding the density variations between the targets and the surrounding structures. To confirm the presence of ore and mineral targets, simple geometric bodies are often used. One of the commonly used global metaheuristic algorithms for gravity data analysis is the particle optimization algorithm.

View Article and Find Full Text PDF

Due to the influence of the shooting environment and inherent image characteristics, there is a large amount of interference in the process of image stitching a geological borehole video. To accurately match the acquired image sequences in the inner part of a borehole, this paper presents a new method of stitching an unfolded borehole image, which uses the image generated from the video to construct a large-scale panorama. Firstly, the speeded-up robust feathers (SURF) algorithm is used to extract the image feature points and complete the rough matching.

View Article and Find Full Text PDF

Validation of Novel Ultrasonic Phased Array Borehole Probe by Using Simulation and Measurement.

Sensors (Basel)

December 2022

Bundesanstalt für Materialforschung und -Prüfung (BAM), 12205 Berlin, Germany.

Low-frequency ultrasonic testing is a well-established non-destructive testing (NDT) method in civil engineering for material characterization and the localization of cracks, reinforcing bars and delamination. A novel ultrasonic borehole probe is developed for in situ quality assurance of sealing structures in radioactive waste repositories using existing research boreholes. The aim is to examine the sealing structures made of salt concrete for any possible cracks and delamination and to localize built-in components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!