Zebrafish have become an established vertebrate model to study cardiovascular development and disease. However, most published studies of the zebrafish vascular architecture rely on subjective visual assessment, rather than objective quantification. In this paper, we used state-of-the-art light sheet fluorescence microscopy to visualize the vasculature in transgenic fluorescent reporter zebrafish. Analysis of image quality, vascular enhancement methods, and segmentation approaches were performed in the framework of the open-source software Fiji to allow dissemination and reproducibility. Here, we build on a previously developed image processing pipeline; evaluate its applicability to a wider range of data; apply and evaluate an alternative vascular enhancement method; and, finally, suggest a work-flow for successful segmentation of the embryonic zebrafish vasculature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320862 | PMC |
http://dx.doi.org/10.3390/jimaging5010014 | DOI Listing |
Theranostics
January 2025
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China.
Dysfunctional tumor vasculature, hypoxia, and an immunosuppressive microenvironment are significant barriers to effective cancer therapy. Autophagy, which is critical for maintaining cellular homeostasis and apoptosis resistance, is primarily triggered by hypoxia and nutrient deprivation, conditions prevalent in dysfunctional tumor vessels due to poor circulation. However, the role of autophagy in dysfunctional tumor endothelial cells and its impact on treatment and the tumor microenvironment (TME) remain poorly understood.
View Article and Find Full Text PDFEur J Cell Biol
December 2024
Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA. Electronic address:
Vascular stabilization is a mechanosensitive process, in part driven by blood flow. Here, we demonstrate the involvement of the mechanosensitive ion channel, Piezo1, in promoting arterial accumulation of vascular smooth muscle cells (vSMCs) during zebrafish development. Using a series of small molecule antagonists or agonists to temporally regulate Piezo1 activity, we identified a role for the Piezo1 channel in regulating klf2a, a blood flow responsive transcription factor, expression levels and altered targeting of vSMCs between arteries and veins.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011-1101 USA.
Background: The ability to generate endogenous Cre recombinase drivers using CRISPR-Cas9 knock-in technology allows lineage tracing, cell type specific gene studies, and validation of inferred developmental trajectories from phenotypic and gene expression analyses. This report describes endogenous zebrafish Cre and CreERT2 drivers generated with GeneWeld CRISPR-Cas9 precision targeted integration.
Results: and knock-ins crossed with ubiquitous -based Switch reporters led to broad labeling in expected mesodermal and neural crest-derived lineages in cardiac, pectoral fins, pharyngeal arch, liver, intestine, and mesothelial tissues, as well as enteric neurons.
J Exp Clin Cancer Res
December 2024
The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Background: Acral melanoma (AM) is an aggressive melanoma variant that arises from palmar, plantar, and nail unit melanocytes. Compared to non-acral cutaneous melanoma (CM), AM is biologically distinct, has an equal incidence across genetic ancestries, typically presents in advanced stage disease, is less responsive to therapy, and has an overall worse prognosis.
Methods: An independent analysis of published sequencing data was performed to evaluate the frequency of receptor tyrosine kinase (RTK) ligands and adapter protein gene variants and expression.
Sci Rep
December 2024
Biochemical Pharmacology,William Harvey Research Institute, Barts & The London Faculty of Medicine &Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
Local haemodynamics control arterial homeostasis and dysfunction by generating wall shear stress (WSS) which regulates endothelial cell (EC) physiology. Here we use a zebrafish model to identify genes that regulate EC proliferation in response to flow. Suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) reduced EC proliferation in the intersegmental vessels (ISVs) compared to controls exposed to flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!