The path toward quantum advantage in optical spectroscopy of materials.

Proc Natl Acad Sci U S A

Dipartimento di Fisica, Politecnico di Milano, 20133 Milan, Italy

Published: September 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433559PMC
http://dx.doi.org/10.1073/pnas.2112897118DOI Listing

Publication Analysis

Top Keywords

path quantum
4
quantum advantage
4
advantage optical
4
optical spectroscopy
4
spectroscopy materials
4
path
1
advantage
1
optical
1
spectroscopy
1
materials
1

Similar Publications

Low-power gas sensors that can be used in IoT (Internet of Things) systems, consumer devices, and point-of-care devices will enable new applications in environmental monitoring and health protection. We fabricated a monolithic chemiresistive gas sensor by integrating a micro-lightplate with a 2D sensing material composed of single-layer graphene and monolayer-thick TiO. Applying ultraviolet (380 nm) light with quantum energy above the TiO bandgap effectively enhanced the sensor responses.

View Article and Find Full Text PDF

The structural and electronic behavior of thiosemicarbazone (TSC)-based metal complexes of Mn (II), Fe (II), and Ni (II) have been investigated. The synthesized metal complexes were characterized using elemental analysis, magnetic susceptibility, molar conductivity, FTIR, and UV-Vis spectroscopy, the computational path helped with further structural investigation. The solubility test on the TSC and its complexes revealed their solubility in most organic solvents.

View Article and Find Full Text PDF

We show that the minimum entropy production in near-reversible quantum state transport along a path is a simple function of the path length measured according to the Fisher-KMB metrics. Hence, for the sharp values of path lengths, also called statistical lengths, we obtain the operational meaning to quantify the residual irreversibility in near-reversible state transport. In the classical limit, the Bhattacharyya fidelity is found to have a sharp operational meaning after eighty years.

View Article and Find Full Text PDF

Synergistic Control of Ferroelectric and Optical Properties in Molecular Ferroelectric for Multiplexing Nonvolatile Memory.

Adv Mater

January 2025

Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China.

Utilizing the correlation among diverse physical properties to facilitate multiplexing and multistate memory is anticipated to emerge as an efficient strategy to enhance memory capacity, achieve device miniaturization, and ensure information security. As an important functional material, ferroelectrics have long been considered as a potential candidate in multistate memory devices. Furthermore, the integration of optical response offers an alternative path to realizing multiplexing features, further enhancing the versatility and efficiency of these devices.

View Article and Find Full Text PDF

RL-QPSO net: deep reinforcement learning-enhanced QPSO for efficient mobile robot path planning.

Front Neurorobot

January 2025

Hebi Institute of Engineering and Technology, Henan Polytechnic University, Hebi, Henan, China.

Introduction: Path planning in complex and dynamic environments poses a significant challenge in the field of mobile robotics. Traditional path planning methods such as genetic algorithms, Dijkstra's algorithm, and Floyd's algorithm typically rely on deterministic search strategies, which can lead to local optima and lack global search capabilities in dynamic settings. These methods have high computational costs and are not efficient for real-time applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!