Inner Hemispheric and Interhemispheric Connectivity Balance in the Human Brain.

J Neurosci

Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.

Published: October 2021

The connectome of the brain has a great impact on the function of the brain as the structure of the connectome affects the speed and efficiency of information transfer. As a highly energy-consuming organ, an efficient network structure is essential. A previous study has shown consistent overall brain connectivity across a large variety of species. This connectivity conservation was explained by a balance between interhemispheric and intrahemispheric connections; that is, spices with highly connected hemispheres appear to have weaker interhemisphere connections. This study examines this connectivity trade-off in the human brain using diffusion-based tractography and network analysis in the Human Connectome Project (970 subjects, 527 female). We explore the biological origins of this phenomenon, heritability, and the effect on cognitive measures.The proportion of commissural fibers in the brain had a negative correlation to hemispheric efficiency, pointing to a trade-off between inner hemispheric and interhemispheric connectivity. Network hubs including anterior and middle cingulate cortex, superior frontal areas, medial occipital areas, the parahippocampal gyrus, post- and precentral gyri, and the precuneus had the strongest contribution to this phenomenon. Other results show a high heritability as well as a strong connection to crystalized intelligence. This work presents cohort-based network analysis research, spanning a large variety of samples and exploring the overall architecture of the human connectome. Our results show a connectivity conservation phenomenon at the base of the overall brain network architecture. This network structure may explain much of the functional, behavioral, and cognitive variability among different brains. The network structure of the brain is at the basis of every brain function as it dictates the characteristics of information transfer. Understanding the patterns and mechanisms that guide the connectome structure is crucial to understanding the brain itself. Here we unravel the mechanism at the base of the connectivity conservation phenomenon by exploring the interaction between hemispheric and commissural connectivity in a large-scale cohort-based connectivity study. We describe the trade-off between the two components and examine the origins of the trade-off and observe the effect on cognitive abilities and behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496194PMC
http://dx.doi.org/10.1523/JNEUROSCI.1074-21.2021DOI Listing

Publication Analysis

Top Keywords

network structure
12
connectivity conservation
12
brain
10
connectivity
9
inner hemispheric
8
hemispheric interhemispheric
8
interhemispheric connectivity
8
human brain
8
large variety
8
network analysis
8

Similar Publications

Introduction: Despite efforts by health organizations to share evidence-based information, fake news hindered the promotion of social distancing and vaccination during the coronavirus disease 2019 (COVID-19) pandemic. This study analyzed COVID-19 knowledge and practices in a vulnerable area in northern Rio de Janeiro, acknowledging the influence of the complex social and economic landscape on public health perceptions.

Methodology: This cross-sectional study was conducted in Novo Eldorado - a low-income, conflict-affected neighborhood in Campos dos Goytacazes - using a structured questionnaire, following the peak of COVID-19 deaths in Brazil (July-December 2021).

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Multi-objective design of multi-material truss lattices utilizing graph neural networks.

Sci Rep

January 2025

Advanced Manufacturing Lab, ETH Zürich, Leonhardstrasse 21, 8092, Zurich, Switzerland.

The rapid advancements in additive manufacturing (AM) across different scales and material classes have enabled the creation of architected materials with highly tailored properties. Beyond geometric flexibility, multi-material AM further expands design possibilities by combining materials with distinct characteristics. While machine learning has recently shown great potential for the fast inverse design of lattice structures, its application has largely been limited to single-material systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!