Dissolved organic matter (DOM) plays a major role in ecological systems and influences the fate and transportation of many pollutants. Despite the significance of DOM, understanding of how environmental and anthropogenic factors influence its composition and characteristics is limited, especially in urban stormwater runoff. In this article, the chemical properties (pollutant loads, molecular weight, aromaticity, sources, and molecular composition) of DOM in stormwater extracted from three typical end-members (traffic, residential, and campus regions) were characterized by UV-visible (UV-vis) spectroscopy, excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC), and ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). There are three findings: (1) The basic properties of DOM in stormwater runoff varied obviously from three urban fields, and the effect of initial flush was also apparent. (2) The DOM in residential areas mainly came from autochthonous sources, while allochthonous sources primarily contributed to the DOM in traffic and campus areas. However, it was mainly composed of terrestrial humic-like components with CHO and CHON element composition and HULO and aliphatic formulas. (3) The parameters characterizing DOM were primarily related to terrestrial source and aromaticity, but their correlations varied. Through the combination of optical methods and UPLC-Q-TOF spectrometry, the optical and molecular characteristics of rainwater are effectively revealed, which may provide a solid foundation for the classification management of stormwater runoff in different urban regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2021.02.012 | DOI Listing |
Water Sci Technol
January 2025
China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.
Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 101407, China.
Rainwater harvesting systems (RHS) are extensively executed to manage stormwater control and water shortage issues in cities. However, the influences of rainfall characteristics on the performances of RHS are still not deeply explored. In this research, a methodology framework is developed to explore the influences of rainfall characteristics on stormwater control and water saving performances of RHS, by using daily precipitation data during 1968-2017 at 30 stations across the Beijing region as a testbed.
View Article and Find Full Text PDFEnviron Sci Technol Lett
October 2024
Soller Environmental, Berkeley, California 94703, United States.
Increasing pressures on traditional sources of water have accelerated the adoption of water reuse throughout the world. A key consideration for communities pursuing water reuse is understanding the amount of treatment that is needed to ensure adequate human health protection. Several U.
View Article and Find Full Text PDFMolecules
January 2025
Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI, USA. Electronic address:
Green stormwater infrastructure is growing in adoption across the world due to its ability to capture and treat stormwater runoff at the source; however, while green stormwater infrastructure is effective at reducing the concentration of many priority pollutants, bioretention often increases the concentration of dissolved phosphorus in the stormwater it treats. This is a significant shortcoming, as dissolved phosphorus can promote algae growth in receiving water bodies resulting in negative impacts to human and aquatic health. This study seeks to address this shortcoming through an end-of-pipe filter at the end of bioretention effluent pipes designed to reduce the concentration of dissolved phosphorus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!