Background Obesity is associated with long-term health consequences including cardiovascular disease. Separating the independent effects of childhood and adulthood obesity on cardiovascular disease risk is challenging as children with obesity typically remain overweight throughout the lifecourse. Methods and Results This study used 2-sample univariable and multivariable Mendelian randomization to estimate the effect of childhood body size both independently and after accounting for adult body size on 12 endpoints across the cardiovascular disease disease spectrum. Univariable analyses identified strong evidence of a total effect between genetically predicted childhood body size and increased risk of atherosclerosis, atrial fibrillation, coronary artery disease, heart failure, hypertension, myocardial infarction, peripheral artery disease, and varicose veins. However, evidence of a direct effect was weak after accounting for adult body size using multivariable Mendelian randomization, suggesting that childhood body size indirectly increases risk of these 8 disease outcomes via the pathway involving adult body size. Conclusions These findings suggest that the effect of genetically predicted childhood body size on the cardiovascular disease outcomes analyzed in this study are a result of larger body size persisting into adulthood. Further research is necessary to ascertain the critical timepoints where, if ever, the detrimental impact of obesity initiated in early life begins to become immutable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649247PMC
http://dx.doi.org/10.1161/JAHA.121.021503DOI Listing

Publication Analysis

Top Keywords

body size
40
childhood body
20
cardiovascular disease
20
adult body
16
mendelian randomization
12
body
10
size
10
disease
9
size indirectly
8
disease spectrum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!