Medical image segmentation tasks hitherto have achieved excellent progresses with large-scale datasets, which empowers us to train potent deep convolutional neural networks (DCNNs). However, labeling such large-scale datasets is laborious and error-prone, which leads the noisy (or incorrect) labels to be an ubiquitous problem in the real-world scenarios. In addition, data collected from different sites usually exhibit significant data distribution shift (or domain shift). As a result, noisy label and domain shift become two common problems in medical imaging application scenarios, especially in medical image segmentation, which degrade the performance of deep learning models significantly. In this paper, we identify a novel problem hidden in medical image segmentation, which is unsupervised domain adaptation on noisy labeled data, and propose a novel algorithm named "Self-Cleansing Unsupervised Domain Adaptation" (S-CDUA) to address such issue. S-CUDA sets up a realistic scenario to solve the above problems simultaneously where training data (i.e., source domain) not only shows domain shift w.r.t. unsupervised test data (i.e., target domain) but also contains noisy labels. The key idea of S-CUDA is to learn noise-excluding and domain invariant knowledge from noisy supervised data, which will be applied on the highly corrupted data for label cleansing and further data-recycling, as well as on the test data with domain shift for supervised propagation. To this end, we propose a novel framework leveraging noisy-label learning and domain adaptation techniques to cleanse the noisy labels and learn from trustable clean samples, thus enabling robust adaptation and prediction on the target domain. Specifically, we train two peer adversarial networks to identify high-confidence clean data and exchange them in companions to eliminate the error accumulation problem and narrow the domain gap simultaneously. In the meantime, the high-confidence noisy data are detected and cleansed in order to reuse the contaminated training data. Therefore, our proposed method can not only cleanse the noisy labels in the training set but also take full advantage of the existing noisy data to update the parameters of the network. For evaluation, we conduct experiments on two popular datasets (REFUGE and Drishti-GS) for optic disc (OD) and optic cup (OC) segmentation, and on another public multi-vendor dataset for spinal cord gray matter (SCGM) segmentation. Experimental results show that our proposed method can cleanse noisy labels efficiently and obtain a model with better generalization performance at the same time, which outperforms previous state-of-the-art methods by large margin. Our code can be found at https://github.com/zzdxjtu/S-cuda.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2021.102214 | DOI Listing |
Biomed Phys Eng Express
January 2025
Department of Ophthalmology, Hospital Universitario de Canarias, Carretera Ofra S/N, La Laguna, Santa Cruz de Tenerife, 38320, SPAIN.
This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Jinan, Shandong, 250355, CHINA.
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.
View Article and Find Full Text PDFPain
February 2025
Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!