Assessing the impacts of differential depositional settings and/or anthropogenic perturbations on sulfur and iron diagenesis in sediments of the Bohai Sea and North Yellow Sea.

Mar Pollut Bull

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China. Electronic address:

Published: November 2021

Natural processes and human activities exert important impacts on elemental cycling in coastal sediments, which has not been well documented. Sediments in the Bohai Sea and North Yellow Sea were investigated to assess the impacts of the Yellow River inputs and/or anthropogenic perturbations on diagenesis of iron and sulfur. Labile iron (0.5 M HCl-extractable iron) in the sediments is low due to iron-poor nature of source materials. Dynamic regimes and low availability of labile organic carbon (OC) result in relatively low sulfide contents in deltaic sediments. However, low but continuous supply of labile OC exported from an anthropogenically impacted bay could substantially elevate sulfide burial in sediments near the bay. Neither offshore oil exploitations nor frequent algal blooms in the seas have detectable influences on iron and sulfur diagenesis in the sediments. The sediments are capable of quickly consuming porewater sulfide by reaction with reactive iron under the current conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2021.112894DOI Listing

Publication Analysis

Top Keywords

and/or anthropogenic
8
anthropogenic perturbations
8
sediments
8
diagenesis sediments
8
sediments bohai
8
bohai sea
8
sea north
8
north yellow
8
yellow sea
8
iron sulfur
8

Similar Publications

The geochemical and chemical constituents of river water quality could be influenced by human activities and organic processes like water interacting with the lithogenic structure that the river flows through. Evaluating evidence based primary root of the predominant pollutant ions, their interactions as well as the factors controlling their dominance is crucial in studies regarding water environment and hydrology especially as most studies focus on theoretical methods. In order to understand the water cycle, safeguard surface water resources, and preserve the human environment, this study evaluated surface water hydro-chemical facies, quality dynamics, and portability in southern Nigeria using multivariate statistical approaches by analyzing selected hydro-chemical characteristics as indicators of pollution along the river during wet and dry seasons.

View Article and Find Full Text PDF

Insects represent most of terrestrial animal biodiversity, and multiple reports suggest that their populations are declining globally due to anthropogenic impacts. Yet, a high proportion of insect species remain undescribed and limited data on their population dynamics hamper insect conservation efforts. This is particularly critical in tropical biodiversity hotspots such as Southeast Asia.

View Article and Find Full Text PDF

The daily transition between day and night, known as the diel cycle, is characterised by significant shifts in environmental conditions and biological activity, both of which can affect crucial ecosystem functions like pollination. Despite over six decades of research into whether pollination varies between day and night, consensus remains elusive. We compiled the evidence of diel pollination from 135 studies with pollinator exclusion experiments involving 139 angiosperms.

View Article and Find Full Text PDF

Investigation of potential cytotoxicity of a water-soluble, red-fluorescent [70]fullerene nanomaterial in .

Nanotoxicology

December 2024

Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland.

Fullerenes (C, C) as carbon nanomaterials can enter the environment through natural processes and anthropogenic activities, while synthetic fullerenes are commonly used in medicine in targeted therapies in association with antibodies, or anticancer and antimicrobial drugs. As the nanoparticles, they can pass through cell membranes and organelles and accumulate in the entire cytoplasm. The red-fluorescent, water-soluble [70]fullerene derivative C-OMe-ser, which produces reactive oxygen species upon illumination with an appropriate wavelength, passed into the cytoplasm of the middle region in the digestive system.

View Article and Find Full Text PDF

Emerging nanomaterials incorporated in membranes for polyfluoroalkyl substances (PFAS) removal from water: A review.

J Environ Manage

December 2024

Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates. Electronic address:

Water purification become more challenging day by day, due to novel anthropogenic pollutants such as per- and polyfluoroalkyl substances (PFAS) used in nonstick cookware, firefighting foams, packaging etc. PFAS has adverse effects on human health and ecosystem and their physicochemical properties and unique molecular structures make the conventional water treatment methods more challenging. Among the novel PFAS removal technologies, nanomaterials incorporated in membranes are regarded as promising membrane technology for the treatment of PFAS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!