The uptake of selenite in calcite revealed by X-ray absorption spectroscopy and quantum chemical calculations.

Sci Total Environ

Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Photon Factory, Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan.

Published: January 2022

Selenium (Se) is an important trace element in the environment, but the interaction of Se with calcite that may control the fate and geochemical behavior of Se is not fully understood. In this study, the molecular-scale mechanism for the uptake of selenite in calcite was investigated by a combination of laboratory experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy, and quantum chemical calculations. Results showed that selenite can be largely distributed to calcite at circumneutral pH. The local structure of Se in calcite obtained from EXAFS analyses, in combination with quantum chemical calculations, demonstrated that selenite can be incorporated into calcite by substituting for the carbonate, and that the geometric incompatibility of selenite could be accommodated by a slight expansion of crystal volume. The findings from this study suggest that calcite could be a potential Se sink, providing an important insight into the understanding of the mobility and geochemical behavior of Se in the subsurface environments particularly in the groundwater system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.149221DOI Listing

Publication Analysis

Top Keywords

quantum chemical
12
chemical calculations
12
uptake selenite
8
selenite calcite
8
x-ray absorption
8
spectroscopy quantum
8
geochemical behavior
8
calcite
7
calcite revealed
4
revealed x-ray
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!