This study aimed to determine the effect of the climatic change on the phototrophic communities of hypersaline microbial mats. Ocean acidification and warming were simulated alone and together on microbial mats placed into mesocosms. As expected, the temperature in the warming treatments increased by 4 °C from the initial temperature. Surprisingly, no significance difference was observed between the water pH of the different treatments despite of a decrease of 0.4 unit pH in the water reserves of acidification treatments. The salinity increased on the warming treatments and the dissolved oxygen concentration increased and was higher on the acidification treatments. A total of 37 pigments were identified belonging to chlorophylls, carotenes and xanthophylls families. The higher abundance of unknown chlorophyll molecules called chlorophyll derivatives was observed in the acidification alone treatment with a decrease in chlorophyll a abundance. This change in pigmentary composition was accompanied by a higher production of bound extracellular carbohydrates but didn't affect the photosynthetic efficiency of the microbial mats. A careful analysis of the absorption properties of these molecules indicated that these chlorophyll derivatives were likely bacteriochlorophyll c contained in the chlorosomes of green anoxygenic phototroph bacteria. Two hypotheses can be drawn from these results: 1/ the phototrophic communities of the microbial mats were modified under acidification treatment leading to a higher relative abundance of green anoxygenic bacteria, or 2/ the highest availability of CO in the environment has led to a shift in the metabolism of green anoxygenic bacteria being more competitive than other phototrophs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.149787 | DOI Listing |
Sci Rep
January 2025
Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt.
In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.
View Article and Find Full Text PDFISME J
January 2025
Division of Biosphere Sciences and Engineering, Carnegie Science, Stanford, CA, United States.
Photosynthetic microbial mats in hot springs can provide insights into the diel behaviors of communities in extreme environments. In this habitat, photosynthesis dominates during the day, leading to super-oxic conditions, with a rapid transition to fermentation and anoxia at night. Multiple samples were collected from two springs over several years to generate metagenomic and metatranscriptomic datasets.
View Article and Find Full Text PDFBiopolymers
January 2025
Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, Dhaka, Bangladesh.
The antibacterial nanofibrous mat is crucial in biomedicine as it enhances infection control, expedites wound healing, and mitigates health hazards by decreasing antibiotic usage. A novel synergistic antibacterial and hydrophilic nanofibrous mat successfully fabricated by solution electrospinning from polyvinyl alcohol (PVA) incorporated Croton bonplandianum Baill (CBB) leaves extract. Antioxidant-enriched leaf extract of the CBB plant was integrated with PVA in varying proportions of 30% (CBB-30), 40% (CBB-40), and 50% (CBB-50) to manufacture antibacterial nanofibrous mat.
View Article and Find Full Text PDFFungal Genet Biol
December 2024
University of California, Santa Barbara, Department of Chemical Engineering, Santa Barbara, CA 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, United States. Electronic address:
Anaerobic gut fungi of the phylum Neocallimastigomycota are microbes proficient in valorizing low-cost but difficult-to-breakdown lignocellulosic plant biomass. Characterization of different fungal life stages and how they contribute to biomass breakdown are critical for biotechnological applications, yet we lack foundational knowledge about the transcriptional, metabolic, and enzyme secretion behavior of different life stages of anaerobic gut fungi: zoospores, germlings, immature thalli, and mature zoosporangia. A Miracloth-based technique was developed to enrich cell pellets with zoospores - the free-swimming, flagellated, young life stage of anaerobic gut fungi.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Winogradsky Institute of Microbiology Federal Research Center Fundamentals of Biotechnology Russian Academy of Sciences, 60 let Oktyabrya Prospect, 7 Build.2, Moscow, Russia.
The Kuril Islands are located in the Far-East of Russia and enriched with shallow and terrestrial hot springs. Prokaryotic diversity of Kuril geothermal environments has been studied fragmentarily and mainly by culture-dependent methods. We performed the first large-scale investigation of microbial communities, inhabited more than 30 terrestrial hot springs of Kunashir and Iturup Islands, analyzed by 16S rRNA gene fragment amplicon sequencing, together with chemical analysis of thermal waters and sediments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!