The limited time indorsed to face the COVID-19 emergency and large number of deaths across the globe, poses an unrelenting challenge to find apt therapeutic approaches. However, lead candidate selection to phase III trials of new chemical entity is a time-consuming procedure, and not feasible in pandemic, such as the one we are facing. Drug repositioning, an exploration of existing drug for new therapeutic use, could be an effective alternative as it allows fast-track estimation in phase II-III trials, or even forthright compassionate use. Although, drugs repurposed for COVID-19 pandemic are commercially available, yet the evaluation of their safety and efficacy is tiresome and painstaking. In absence of any specific treatment the easy alternatives such as over the counter products, phytotherapies and home remedies have been largely adopted for prophylaxis and therapy as well. In recent years, it has been demonstrated that several pharmaceutical excipients possess antiviral properties making them prospective candidates against SARS-CoV-2. This review highlights the mechanism of action of various antiviral excipients and their propensity to act against SARs-CoV2. Though, repurposing of pharmaceutical excipients against COVID-19 has the edge over therapeutic agents in terms of safety, cost and fast-track approval trial burdened, this hypothesis needs to be experimentally verified for COVID-19 patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2021.1975020 | DOI Listing |
Int J Pharm
January 2025
EPSRC CMAC Future Manufacturing Research Hub, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 99 George Street, Glasgow G1 1RD UK; The Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE UK.
Oral drug delivery remains the preferred method of drug administration but due to poor solubility many active pharmaceutical ingredients (APIs) are ill suited to this. A number of methods to improve solubility of poorly soluble Biopharmaceutical Classification System (BCS) Class II drugs already exist but there is a lack of scalable, flexible methods. As such the current study applies the innovative technique of aerosol jet printing to increase the dissolution capabilities of a Class II drug in a manner which permits flexibility to allow dosage form tailoring.
View Article and Find Full Text PDFBiomaterials
January 2025
Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, PR China. Electronic address:
Developing nanomedicines with enhanced activity to scavenge reactive oxygen species (ROS) has emerged as a promising strategy for addressing ROS-associated diseases, such as drug-induced liver injury. However, designing nanozymes that not only remove ROS but also accelerate the repair of damaged liver cells remains challenging. Here, a two-pronged black phosphorus/Ceria nanozyme with mitochondria-targeting ability (TBP@CeO) is designed.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.
The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells.
View Article and Find Full Text PDFTher Deliv
January 2025
Institute of Pharmaceutical Research, GLA University, Mathura, India.
Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.
Method: A 3 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties.
Int J Pharm
January 2025
Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, Freiburg i. Br. 79104 Germany; ten23 health AG, Mattenstr. 22, Basel 4058 Switzerland. Electronic address:
Lipid nanoparticles (LNPs) have demonstrated their therapeutic potential as safe and effective drug delivery systems for nucleic acids during the COVID-19 pandemic. However, one of the main challenges during technical CMC (Chemistry, Manufacturing, and Controls) development is their long-term stability at temperatures of 2-8 °C or higher, which may be improved by the removal of water by lyophilization. In this study, we identified lyo-/cryo-protectants for freeze-dried mRNA-LNP formulations beyond conventional excipients such as sucrose and trehalose as T-modifiers using polyA as a surrogate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!