Hantaan virus infection may cause severe lethal hemorrhagic fever with renal syndrome (HFRS) in humans. The chemokine fractalkine (CX3CL1) acts as a proinflammatory cytokine, and it is elevated in several infectious diseases. However, little is known about the contributions of CX3CL1 to HFRS pathogenesis. Present study detected plasma CX3CL1 levels and expression of the receptor CX3CR1 in HFRS patients and discussed the possible effects of CX3CL1 on pathogenesis of HFRS. Plasma CX3CL1 in acute phase and Critical/Severe groups of HFRS patients were significantly increased compared to that in normal controls ( < 0.001 and  < 0.01, respectively). High plasma CX3CL1 was negatively correlated with platelet count ( = -0.5844,  < 0.0001) and positively correlated with blood urea nitrogen ( = 0.3668,  = 0.0039), creatinine ( = 0.42,  = 0.0008), and white blood cells ( = 0.2646,  = 0.0411). Expression of CX3CR1 on nonclassical and intermediate monocytes was also increased in the acute phase ( < 0.01 for both the cells) and Critical/Severe groups ( < 0.05 and  < 0.01, respectively) of HFRS patients compared to that in normal controls. Taken together, elevation of plasma CX3CL1 in HFRS patients and expression of CX3CR1 on nonclassical and intermediate monocyte subsets might provide new insights into the potential role of CX3CL1/CX3CR1 in pathogenesis of HFRS.

Download full-text PDF

Source
http://dx.doi.org/10.1089/vim.2020.0244DOI Listing

Publication Analysis

Top Keywords

hemorrhagic fever
8
fever renal
8
renal syndrome
8
plasma cx3cl1
8
hfrs patients
8
hfrs
5
cx3cl1
5
elevated plasma
4
plasma fractalkine
4
fractalkine level
4

Similar Publications

Background: Ugandan health authorities declared an outbreak of Ebola disease (EBOD), caused by the Sudan virus, in September 2022. A rapid review was conducted to update the Public Health Agency of Canada's guidelines for infection prevention and control measures for EBOD in healthcare settings to prepare for potential introduction of cases.

Objective: Summarize the available evidence on personal protective equipment (PPE) use by healthcare workers (HCWs) to prevent exposure to and transmission of viral hemorrhagic fevers (VHFs), including Ebola virus.

View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne viral hemorrhagic fever caused by the severe fever with thrombocytopenia syndrome virus (SFTSV). This virus, which is transmitted through ticks, is prevalent in Asian countries, including Japan. This report describes two rare cases of SFTS with concurrent bacteremia.

View Article and Find Full Text PDF

Zika virus (ZIKV) and dengue virus (DENV) are two major mosquito-borne flaviviruses that pose a significant threat to the global public health system, particularly in tropical regions. The clinical outcomes related to these viral pathogens can vary from self-limiting asymptomatic infections to various forms of life-threatening pathological conditions such as haemorrhagic disorders. In addition to the direct effects of the viral pathogens, immune processes play also a significant function in the development of diseases mediated by ZIKV and DENV.

View Article and Find Full Text PDF

The Junín virus (JUNV) is one of the New World arenaviruses that cause severe hemorrhagic fever. Human transferrin receptor 1 (hTfR1) has been identified as the main receptor for JUNV for virus entry into host cells. To date, no treatment has been approved for JUNV.

View Article and Find Full Text PDF

Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!