To clarify the influence of coronavirus disease-19 (COVID-19) on the care of muscular dystrophy patients, we performed a questionnaire survey that was posted on the internet on May 11, 2020. By the end of July 2020, 542 responses had been collected. Approximately 30% of patients postponed regular consultations, and one-quarter of patients who received consultation more than once a month used telephone consultations. Two of 84 patients with Duchenne muscular dystrophy had reduced their steroid doses. A shortage of ventilator accessories and infection protection equipment occurred following the onset of COVID-19, and this shortage had a serious impact on medical care and infection prevention measures. Reductions in rehabilitation and other services, and avoidance of outings, led to a decrease in exercise and an increase in caregiver burden. Inpatients were restricted from going out and visiting family members. More than 20% of patients reported physical or mental complaints; however, few required treatment. COVID-19 has seriously affected the activities and quality of life of patients with muscular dystrophy. We will continue this survey and analyze the longitudinal changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102088 | PMC |
http://dx.doi.org/10.1016/j.nmd.2021.04.008 | DOI Listing |
Int J Mol Sci
January 2025
Programa de Comunicación Celular en Cáncer, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7550000, Chile.
DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other biological pathways. Notably, these disrupted processes have been associated, in other pathological contexts, with the presence of connexin (Cx) hemichannels-transmembrane structures that mediate communication between the intracellular and extracellular environments.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
The calcium-dependent phospholipid scramblase TMEM16E mediates ion transport and lipid translocation across the plasma membrane. TMEM16E also contributes to protection of membrane structure by facilitating cellular repair signaling. Our research reveals that TMEM16E activation promotes macropinocytosis, essential for maintaining plasma membrane integrity.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy.
View Article and Find Full Text PDFCell Rep Med
December 2024
Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan. Electronic address:
Duchenne muscular dystrophy (DMD) is a severe muscle disorder caused by mutations in the DMD gene, leading to dystrophin deficiency. Antisense oligonucleotide (ASO)-mediated exon skipping offers potential by partially restoring dystrophin, though current therapies remain mutation specific with limited efficacy. To overcome those limitations, we developed brogidirsen, a dual-targeting ASO composed of two directly connected 12-mer sequences targeting exon 44 using phosphorodiamidate morpholino oligomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!