Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
DNA methylation (DNAm) in mammals is mostly examined within the context of CpG dinucleotides. Non-CpG DNAm is also widespread across the human genome, but the functional relevance, tissue-specific disposition, and inter-individual variability has not been widely studied. Our aim was to examine non-CpG DNAm in the wider methylome across multiple tissues from the same individuals to better understand non-CpG DNAm distribution within different tissues and individuals and in relation to known genomic regulatory features.DNA methylation in umbilical cord and cord blood at birth, and peripheral venous blood at age 12-13 y from 20 individuals from the Southampton Women's Survey cohort was assessed by Agilent SureSelect methyl-seq. Hierarchical cluster analysis (HCA) was performed on CpG and non-CpG sites and stratified by specific cytosine environment. Analysis of tissue and inter-individual variation was then conducted in a second dataset of 12 samples: eight muscle tissues, and four aliquots of cord blood pooled from two individuals.HCA using methylated non-CpG sites showed different clustering patterns specific to the three base-pair triplicate (CNN) sequence. Analysis of CAC sites with non-zero methylation showed that samples clustered first by tissue type, then by individual (as observed for CpG methylation), while analysis using non-zero methylation at CAT sites showed samples grouped predominantly by individual. These clustering patterns were validated in an independent dataset using cord blood and muscle tissue.This research suggests that CAC methylation can have tissue-specific patterns, and that individual effects, either genetic or unmeasured environmental factors, can influence CAT methylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235887 | PMC |
http://dx.doi.org/10.1080/15592294.2021.1950990 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!