Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cycloaddition of carbon dioxide (CO) with epoxides to yield highly value-added cyclic carbonates is an effective way to chemically utilize and convert CO. Here, a heterogeneous catalyst of imidazole ionic liquid-decorated covalent organic framework with polyoxometalates (POM@ImTD-COF) was constructed by the covalent modification of ionic liquids to COFs and the electrostatic interaction between POMs and ionic liquids. The obtained POM@ImTD-COF shows high catalytic activity for CO cycloaddition reaction under mild conditions (1 atm and 80 °C) in the presence of a co-catalyst, and the catalytic activity of POM@ImTD-COF has no obvious decrease during reusing five times. The excellent catalytic performance is mainly attributed to the synergistic effect of ionic liquids, POMs, and COFs. In the cycloaddition process, ionic liquids and the co-catalyst weaken the C-O bond of epoxides and promote the ring opening of epoxides. POMs as the Lewis acids facilitate the insertion of CO to form reaction intermediates. The multiple activation effect of ionic liquids and POMs together with the CO adsorption effect and well-dispersed active sites in COFs contribute to the remarkable catalytic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c01426 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!