Background: The most common B-cell cancers, chronic lymphocytic leukemia/lymphoma (CLL), follicular and diffuse large B-cell (FL, DLBCL) lymphomas, have distinct clinical courses, yet overlapping "cell-of-origin". Dynamic changes to the epigenome are essential regulators of B-cell differentiation. Therefore, we reasoned that these distinct cancers may be driven by shared mechanisms of disruption in transcriptional circuitry.
Methods: We compared purified malignant B-cells from 52 patients with normal B-cell subsets (germinal center centrocytes and centroblasts, naïve and memory B-cells) from 36 donor tonsils using >325 high-resolution molecular profiling assays for histone modifications, open chromatin (ChIP-, FAIRE-seq), transcriptome (RNA-seq), transcription factor (TF) binding, and genome copy number (microarrays).
Findings: From the resulting data, we identified gains in active chromatin in enhancers/super-enhancers that likely promote unchecked B-cell receptor signaling, including one we validated near the immunoglobulin superfamily receptors FCMR and PIGR. More striking and pervasive was the profound loss of key B-cell identity TFs, tumor suppressors and their super-enhancers, including EBF1, OCT2(POU2F2), and RUNX3. Using a novel approach to identify transcriptional feedback, we showed that these core transcriptional circuitries are self-regulating. Their selective gain and loss form a complex, iterative, and interactive process that likely curbs B-cell maturation and spurs proliferation.
Interpretation: Our study is the first to map the transcriptional circuitry of the most common blood cancers. We demonstrate that a critical subset of B-cell TFs and their cognate enhancers form self-regulatory transcriptional feedback loops whose disruption is a shared mechanism underlying these diverse subtypes of B-cell lymphoma.
Funding: National Institute of Health, Siteman Cancer Center, Barnes-Jewish Hospital Foundation, Doris Duke Foundation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403728 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2021.103559 | DOI Listing |
JMIR Hum Factors
December 2024
Faculty of Medicine and Health, The University of Sydney, Susan Wakil Health Building, Western Avenue, Camperdown, 2050, Australia, 61 422-259-194.
Background: Good preconception health reduces the incidence of preventable morbidity and mortality for women, their babies, and future generations. In Australia, there is a need to increase health literacy and awareness about the importance of good preconception health. Digital health tools are a possible enabler to increase this awareness at a population level.
View Article and Find Full Text PDFCancer Sci
December 2024
Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan.
KRAS was long deemed undruggable until the discovery of the switch-II pocket facilitated the development of specific KRAS inhibitors. Despite their introduction into clinical practice, resistance mechanisms can limit their effectiveness. Initially, tumors rely on mutant KRAS, but as they progress, they may shift to alternative pathways, resulting in intrinsic resistance.
View Article and Find Full Text PDFChin Med
December 2024
MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
Background: Lipid metabolism is crucial in cancer progression. Lipid droplets (LDs) generated in cancer cells can act as protective mechanisms through alleviating lipotoxicity under stress conditions. We previously developed IC2 from the Chinese medicine icaritin as an inhibitor of stearoyl-CoA desaturase 1 (SCD1).
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan.
Histone modification is a cellular process for transcriptional regulation. In herbivore-damaged plants, activation of genes involved in defence responses is required for antiherbivore properties, but little is known about how the chromatin remodelling system is involved. In Arabidopsis (Arabidopsis thaliana) plants responding to Spodoptera litura larvae, HAC1 and HDA6, a histone acetyltransferase and a histone deacetylase, respectively, were found here to be involved in histone H3 (Lys9; H3K9) acetylation/deacetylation at the promoter region of the plant defensin gene PDF1.
View Article and Find Full Text PDFGenes Cells
January 2025
Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Science, Faculty of Pharmacy, Musashino University, Tokyo, Japan.
We previously suggested that the signal transducer and activator of transcription 1 (STAT1) gene is autoregulated in an interferon (IFN)-dependent manner via a distal regulatory region approximately 5.5-6.2 kb upstream of the murine and human STAT1 promoters (designated 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!