Background: Kidney damage often develops into renal fibrosis. Apoptosis and inflammatory response are the main factors driving the process of renal fibrosis. Here we showed that lncRNA XIST/ miR-19b / SOX6 signal axis regulated apoptosis and inflammation of renal fibrosis.

Methods: HK-2 cells were treated with TGF-β1 to construct cell fibrosis model, and UUO surgery was performed to construct mouse renal fibrosis model. The expression of XIST, miR-19b and SOX6 were examined by qPCR. And levels of fibrosis-related proteins were detected by western blotting. Levels of IL-1β and TNF-α were assessed by qPCR and ELISA, respectively. Renal pathology and fibrosis were evaluated by HE and Masson staining. Flow cytometry and TUNEL staining were employed to evaluate cell apoptosis in cell fibrosis model and mouse renal fibrosis model, respectively. Besides, dual luciferase reporter assay was employed to verify whether XIST had a binding site to miR-19b, and whether miR-19b had a binding site to SOX6.

Results: Here we showed that XIST and SOX6 were upregulated in both HK-2 cells treatment of TGF-β1 and kidneys of UUO mice, while miR-19b was downregulated. Dual luciferase reporter assay displayed that XIST directly bound to miR-19b, and SOX6 was the target of miR-19b. Knockdown of XIST inhibited apoptosis, inflammation and fibrosis in HK-2 cells treatment of TGF-β1 via miR-19b-mediated downregulation of SOX6, while inhibition of miR-19b reversed the effect. Similarly, knockdown of XIST in vivo inhibited apoptosis, inflammation and fibrosis in kidneys of UUO mice via miR-19b-mediated downregulation of SOX6.

Discussion: These results provided evidence that knockdown of XIST inhibited apoptosis and inflammation of renal fibrosis via miR-19b-mediated downregulation of SOX6.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2021.07.012DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
24
apoptosis inflammation
20
inhibited apoptosis
16
fibrosis model
16
xist inhibited
12
inflammation renal
12
downregulation sox6
12
mir-19b sox6
12
hk-2 cells
12
knockdown xist
12

Similar Publications

The case report presents a male patient in his mid-60s with a history of hypertension, benign prostatic hyperplasia and chronic kidney disease (CKD). He presented with gradually increasing serum creatinine levels and hyperglobulinemia, leading to suspicion of multiple myeloma. However, subsequent testing revealed features consistent with systemic lupus erythematosus (SLE) and IgG4-related kidney disease (IgG4-RKD).

View Article and Find Full Text PDF

Proteinuria and tubular cells: Plasticity and toxicity.

Acta Physiol (Oxf)

February 2025

Department of Medicine, Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.

Aim: Proteinuria is the most robust predictive factors for the progression of chronic kidney disease (CKD), and interventions targeting proteinuria reduction have shown to be the most effective nephroprotective treatments to date. While glomerular dysfunction is the primary source of proteinuria, its consequences extend beyond the glomerulus and have a profound impact on tubular epithelial cells. Indeed, proteinuria induces notable phenotypic changes in tubular epithelial cells and plays a crucial role in driving CKD progression.

View Article and Find Full Text PDF

Therapeutic Potential of Ketogenic Interventions for Autosomal-Dominant Polycystic Kidney Disease: A Systematic Review.

Nutrients

December 2024

Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia.

Background: Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD.

View Article and Find Full Text PDF

Interrelation of Natural Polyphenol and Fibrosis in Diabetic Nephropathy.

Molecules

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.

Diabetic nephropathy (DN) is a common and serious complication of diabetes mellitus and a major cause of end-stage renal disease (ESRD). Renal fibrosis, which corresponds to excessive deposition of extracellular matrix and leads to scarring, is a characteristic feature of the various progressive stages of DN. It can trigger various pathological processes leading to the activation of autophagy, inflammatory responses and a vicious circle of oxidative stress and inflammation.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is a leading cause of death in the United States, and renal fibrosis represents a pathologic hallmark of CKD. Extracellular cold-inducible RNA-binding protein (eCIRP) is a stress response protein involved in acute inflammation, tissue injury and regulated cell death. However, the role of eCIRP in chronic inflammation and tissue injury has not been elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!