Combustion of phosphorus-rich residual streams can produce nutrient-rich ashes and these can be used either in further processing or as materials for direct nutrient recycling. The latter requires knowledge on morphological parameters of such ash particles that may impact plant growth, nutrient availability, and soil physical properties. The present work aims to determine the porosity, pore size, and specific surface area of ash particles, and discuss these properties in light of literature concerning interaction with soil water and plant roots. Bottom ash particles from combustion of sewage sludge and wheat straw and their co-combustion were analysed with X-ray microtomography. Image analysis provided information on morphology, specific surface area, porosity, and pore structure on a micrometre scale resolution. Co-combusting sewage sludge with wheat straw resulted in differences in ash particles' porosity and pore structure compared to combustion of pure fuels. Pure wheat straw ash displayed 62 vol% porosity while there was no apparent difference between 10 wt% or 30 wt% mixtures of sewage sludge, with a porosity of 29-31 vol%. Open pore volume comprise the largest part of the porosity (72-99 vol%) enabling interaction between surrounding pore water and nutrients. Overall, the ash particles display large open volume fractions and thin particle walls which may lead to rapid weathering and extensive interaction with soil water. The particles generally contained pore openings over 200 µm towards the surroundings, which provide opportunities for interaction with microbes and roots from a variety of plant species in addition to nutrient transport by soil water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2021.08.019DOI Listing

Publication Analysis

Top Keywords

ash particles
20
sewage sludge
16
wheat straw
16
sludge wheat
12
porosity pore
12
soil water
12
x-ray microtomography
8
specific surface
8
surface area
8
interaction soil
8

Similar Publications

Strength Tests and Mechanism of Composite Stabilized Lightweight Soil Using Dredged Sludge.

Materials (Basel)

January 2025

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China.

To achieve resourceful utilization of dredged sludge, lightweight treatment was performed on sludge from Xunsi River in Wuhan using fly ash, cement, and expanded polystyrene (EPS) particles. Density tests and unconfined compressive strength (UCS) tests were conducted on the composite stabilized sludge lightweight soil to determine the optimal mix ratio for high-quality roadbed fill material with low self-weight and high strength. Subsequently, microstructural tests, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), were conducted.

View Article and Find Full Text PDF

Two 3D-printed crown materials (Crown and Ceramic Crown) were examined to determine the best surface treatment and primers for bonding. Discs of the two materials were printed and mounted with their "intaglio" surfaces untouched. Half the specimens from each group were sandblasted with 50 µm alumina.

View Article and Find Full Text PDF

Nanoscale Fe(0)-zeolite composite derived from coal bottom ash for efficient treatment of Cr(VI)-contaminated groundwater: Unveiling the importance of locations for surface-bound Fe(II) and Fe(0) passivation products.

J Hazard Mater

January 2025

Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Environmental Engineering, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:

The synthesis of coal bottom ash-induced zeolite (Si-Al material) has been widely reported; however, the selective recovery of the three main elements, viz., Si, Al, and Fe, from coal bottom ash for the synthesis of reactive adsorbents has not yet been reported. In this study, we separated the magnetic and non-magnetic fractions of coal bottom ash to selectively recover Fe and Si-Al for synthesizing nanoscale zero-valent iron@zeolite (NZVI@ZBA) composites with uniform formation of Fe(0) nanoparticles on the ZBA surface.

View Article and Find Full Text PDF

Coal fly ash, a waste byproduct of coal-fired power plants rich in silica, is produced in vast quantities, exceeding 750 million tons annually. This abundance underscores the importance of finding sustainable and value-added applications for its reuse. Silver nanoparticle-silica composites represent a class of inorganically hybrid antimicrobial agents as the protection layer of cotton fabrics.

View Article and Find Full Text PDF

Nanoparticles (NPs) exhibit high reactivity and mobility in the environment, and a significant capacity to penetrate living organisms, potentially leading to harmful effects. Volcanoes are the second major source of natural NPs emitted into the atmosphere, with an estimated flux of 342 Tg/year. Few studies have focused on their fate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!