Performance evaluation and mechanism of nitrogen removal in a packed bed reactor using micromagnetic carriers at different carbon to nitrogen ratios.

Bioresour Technol

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China. Electronic address:

Published: December 2021

Advanced nitrogen removal of effluent discharged from secondary treatment systems can avoid eutrophication. However, the lack of biodegradable organics limits biodenitrification. Packed bed reactors filled with carriers with different micromagnetic field (MMF) strengths were used to perform tertiary denitrification. The results showed that MMF significantly improved the denitrification performance, especially at low C/N ratios. Total nitrogen (TN) removal was increased by 4.12% with 0.6 mT MMF when C/N = 4 and increased by 7.06% and 8.06% with 0.3 mT and 0.9 mT MMFs when C/N = 3, respectively. Zooglea, Flavobacterium, and Denitratisoma contributed to the advanced denitrification performance under MMF. In addition, 0.6 mT MMF enhanced nitrogen metabolism and ABC transporter protein and two-component system activities of microorganisms under C/N = 4; 0.3 mT and 0.9 mT MMFs increased nitrogen, carbohydrate, and amino acid metabolism and ABC transporter protein activities under C/N = 3. These findings indicate that MMF has great potential for advanced denitrification from secondary effluent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.125747DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
12
packed bed
8
denitrification performance
8
advanced denitrification
8
metabolism abc
8
abc transporter
8
transporter protein
8
nitrogen
6
mmf
6
performance evaluation
4

Similar Publications

Effect of doping in TiO/chitosan composite on adsorptive-photocatalytic removal of gallic acid from water.

Chemosphere

January 2025

Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely professional University, Phagwara, Punjab, India. Electronic address:

Gallic acid (GA) has emerged as a low biodegradable and high acidity industrial effluent. Due to mutagenic and carcinogenic nature of GA, it becomes essential to remove it from wastewater. Different chemical, physical and biological methods are being used for this purpose.

View Article and Find Full Text PDF

The inhibition of anammox system under Cu stress and mechanisms of biochar-mediated recovery.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China. Electronic address:

Copper (Cu)-containing wastewater has proven difficult to effectively treat using the anammox process. In this study, the nitrogen removal efficiency (NRE), sludge characteristics, microbial community and recovery mechanisms of biochar-mediated anammox under Cu stress were elucidated. At a Custress of 5 mg/L, a 73.

View Article and Find Full Text PDF

Anaerobic ammonium oxidation (Anammox) has garnered significant attention due to its ability to eliminate the need for aeration and supplementary carbon sources in biological nitrogen removal process, relying on the capacity of anaerobic ammonium oxidizing bacteria (AnAOB) to directly convert ammonium and nitrite nitrogen into nitrogen gas. This review consolidates the latest advancements in AnAOB research, outlining the mechanisms and enzymatic processes of Anammox, and summarizing the molecular biological techniques used for studying AnAOB, such as 16s rRNA sequencing, qPCR, and metagenomic sequencing. Additionally, it also overviews the currently identified AnAOB species and their distinct metabolic traits, while consolidating strategies to improve their performance.

View Article and Find Full Text PDF

The deammonification process is an efficient alternative to remove nitrogen from wastewater with a low carbon/nitrogen ratio. However, the reactor configuration and operational factors pose challenges for applications in treatment systems to remove nitrogen from municipal and industrial wastewater on a large scale. To address this gap, this study evaluated a new deammonification strategy using a single-stage membrane aerated biofilm reactor (MABR), operated with continuous flow, under different hydraulic retention times (HRT) in the post-treatment of poultry slaughterhouse wastewater with a low nitrogen load, similar to domestic wastewater.

View Article and Find Full Text PDF

Membrane bioreactors (MBRs) have been widely used in the field of wastewater treatment because of their small footprint and high treatment efficiency. In this research, 10 rural wastewater treatment sites in China that employ the MBR process were systematically studied. Specifically, treatment of actual domestic wastewater using MBRs was examined by high-throughput 16S rRNA gene sequencing to explore the microbial community composition and perform function prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!