Image segmentation remains to be one of the most vital tasks in the area of computer vision and more so in the case of medical image processing. Image segmentation quality is the main metric that is often considered with memory and computation efficiency overlooked, limiting the use of power hungry models for practical use. In this paper, we propose a novel framework (Kidney-SegNet) that combines the effectiveness of an attention based encoder-decoder architecture with atrous spatial pyramid pooling with highly efficient dimension-wise convolutions. The segmentation results of the proposed Kidney-SegNet architecture have been shown to outperform existing state-of-the-art deep learning methods by evaluating them on two publicly available kidney and TNBC breast H&E stained histopathology image datasets. Further, our simulation experiments also reveal that the computational complexity and memory requirement of our proposed architecture is very efficient compared to existing deep learning state-of-the-art methods for the task of nuclei segmentation of H&E stained histopathology images. The source code of our implementation will be available at https://github.com/Aaatresh/Kidney-SegNet.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2021.101975DOI Listing

Publication Analysis

Top Keywords

deep learning
12
pyramid pooling
8
nuclei segmentation
8
histopathology images
8
image segmentation
8
h&e stained
8
stained histopathology
8
segmentation
5
efficient deep
4
architecture
4

Similar Publications

Predicting protein-protein interactions (PPIs) is crucial for advancing drug discovery. Despite the proposal of numerous advanced computational methods, these approaches often suffer from poor usability for biologists and lack generalization. In this study, we designed a deep learning model based on a coattention mechanism that was capable of both PPI and site prediction and used this model as the foundation for PPI-CoAttNet, a user-friendly, multifunctional web server for PPI prediction.

View Article and Find Full Text PDF

Objectives: The aims of the study are to predict lung function impairment in patients with connective tissue disease (CTD)-associated interstitial lung disease (ILD) through computed tomography (CT) quantitative analysis parameters based on CT deep learning model and density threshold method and to assess the severity of the disease in patients with CTD-ILD.

Methods: We retrospectively collected chest high-resolution CT images and pulmonary function test results from 105 patients with CTD-ILD between January 2021 and December 2023 (patients staged according to the gender-age-physiology [GAP] system), including 46 males and 59 females, with a median age of 64 years. Additionally, we selected 80 healthy controls (HCs) with matched sex and age, who showed no abnormalities in their chest high-resolution CT.

View Article and Find Full Text PDF

Deep Learning Reconstruction for Enhanced Resolution and Image Quality in Breath-Hold MRCP: A Preliminary Study.

J Comput Assist Tomogr

November 2024

From the Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Objective: This preliminary study aims to assess the image quality of enhanced-resolution deep learning reconstruction (ER-DLR) in magnetic resonance cholangiopancreatography (MRCP) and compare it with non-ER-DLR MRCP images.

Methods: Our retrospective study incorporated 34 patients diagnosed with biliary and pancreatic disorders. We obtained MRCP images using a single breath-hold MRCP on a 3T MRI system.

View Article and Find Full Text PDF

Synonymous mutations, once considered neutral, are now understood to have significant implications for a variety of diseases, particularly cancer. It is indispensable to identify these driver synonymous mutations in human cancers, yet current methods are constrained by data limitations. In this study, we initially investigate the impact of sequence-based features, including DNA shape, physicochemical properties and one-hot encoding of nucleotides, and deep learning-derived features from pre-trained chemical molecule language models based on BERT.

View Article and Find Full Text PDF

The consumption forecasting of oil and coal can help governments optimize and adjust energy strategies to ensure energy security in China. However, such forecasting is extremely challenging because it is influenced by many complex and uncertain factors. To fill this gap, we propose a hybrid deep learning approach for consumption forecasting of oil and coal in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!