In vivo imaging has revolutionised the study of leukocyte trafficking and revealed many insights on the dynamic behaviour of immune cells in their native environment. Neutrophil migration represents a prominent example whereby live imaging led to discovery of unanticipated cell migration patterns. These cells are the first to enter inflammatory sites and their recruitment had once been thought to be driven primarily by extrinsic signals and resolved by apoptosis in these lesions. However, in vivo imaging in zebrafish and mice indicated that neutrophils are also able to self-organise their migration to a large extent, through collective generation of gradients, in a process referred to as 'swarming', and that they can leave sites of inflammation, in a process referred to as 'reverse migration'. An important step in understanding these newly defined behaviours is the ability to detect and quantify them through statistical analysis. Here we provide a summary of considerations and recommendations for quantitative analysis of neutrophil swarming and reverse migration, with the purpose of introducing relevant analysis tools to new researchers in the field and establishing common frameworks and standards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cdev.2021.203734 | DOI Listing |
JMIR Public Health Surveill
January 2025
Stiftung Gesundheitswissen, Berlin, Germany.
Background: Prevalences of mental disorders are increasing worldwide. However, many people with mental health problems do not receive adequate treatment. An important factor preventing individuals from seeking professional help is negative attitudes toward psychotherapeutic treatment.
View Article and Find Full Text PDFPLoS One
January 2025
Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México.
Land use change from wildlands to urban and productive environments can dramatically transform ecosystem structure and processes. Despite their structural and functional differences from wildlands, human-modified environments offer unique habitat elements for wildlife. In this study, we examined how migratory birds use urban, productive, and wildland environments of a highly anthropized region of Western Mexico known as "El Bajío".
View Article and Find Full Text PDFPLoS One
January 2025
North China University of Water Resources and Electric Power, Zhengzhou City, Henan Province, P.R. China.
This study employs electrical resistivity tomography (ERT) to experimentally investigate the migration characteristics of light non-aqueous phase liquids (LNAPL) under various groundwater conditions. Through cross-hole measurements and time-lapse inversion, the migration process of LNAPL under three scenarios-unsaturated conditions, constant groundwater levels, and declining water levels-was systematically analyzed. The results indicate that LNAPL migration behavior exhibits significant differences under different conditions.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.
The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Department of Ophthalmology, Xingtai People's Hospital, Xingtai, 054001, Hebei, China.
Background: Retinopathy of prematurity (ROP) is a major cause of childhood blindness worldwide, highlighted by retinal neovascularization. Ubiquitin is present throughout the retina. The deubiquitinating enzyme ubiquitin-specific protease 39 (USP39) has been reported to be involved in angiogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!