At present, there are still no anti-Zika virus (ZIKV) drugs or vaccines approved by FDA with accurate targets and antiviral mechanisms. Considering the RNA G-quadruplex sequences in ZIKV genome, it is very meaningful to develop G-quadruplex binders as potential anti-ZIKV drugs with novel and accurate targets. In this paper, five classical G-quadruplex binders including Ber, Braco 19, NiL, 360A and PDS have been chosen to discuss their interaction with ZIKV RNA G-quadruplexes. PDS shows higher binding affinity and thermal stability than the other G-quadruplex binders. This property is further evidenced in cells by immunofluorescence microscopy. And PDS shows higher anti-ZIKV activity (EC = 4.2 ± 0.4 μM) than the other G-quadruplex binders as well as the positive control ribavirin, with a low cytotoxicity. By time-of-addition assay, PDS exerts antiviral activity at the post-entry process of ZIKV replication cycle, thus inhibiting ZIKV mRNA replication and protein expression. Furthermore, PDS combines with ZIKV NS2B-NS3 protease and reduces its catalytic activity. This study suggests that G-quadruplex binder PDS is an effective multi-target ZIKV inhibitor, which provides more guidance to design some novel anti-ZIKV drugs targeting ZIKV RNA G-quadruplexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.08.121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!