Recent advances in smartphone technologies have opened the door to the development of accessible, highly portable sensing tools capable of accurate and reliable data collection in a range of environmental settings. In this article, we introduce a low-cost smartphone-based hyperspectral imaging system that can convert a standard smartphone camera into a visible wavelength hyperspectral sensor for ca. £100. To the best of our knowledge, this represents the first smartphone capable of hyperspectral data collection without the need for extensive post processing. The Hyperspectral Smartphone's abilities are tested in a variety of environmental applications and its capabilities directly compared to the laboratory-based analogue from our previous research, as well as the wider existing literature. The Hyperspectral Smartphone is capable of accurate, laboratory- and field-based hyperspectral data collection, demonstrating the significant promise of both this device and smartphone-based hyperspectral imaging as a whole.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404918PMC
http://dx.doi.org/10.3390/jimaging7080136DOI Listing

Publication Analysis

Top Keywords

hyperspectral imaging
12
data collection
12
capable accurate
8
smartphone-based hyperspectral
8
smartphone capable
8
hyperspectral data
8
hyperspectral
7
smartphone
5
low-cost hyperspectral
4
imaging smartphone
4

Similar Publications

The efficacy and safety of drugs are closely related to the geographical origin and quality of the raw materials. This study focuses on using near-infrared hyperspectral imaging (NIR-HSI) combined with machine learning algorithms to construct content prediction models and origin identification models to predict the components and origin of Radix Paeoniae Rubra (RPR). These models are quick, non-destructive, and accurate for assessing both component content and origin.

View Article and Find Full Text PDF

Direct detection of phycocyanin in sediments by hyperspectral imaging.

J Paleolimnol

December 2024

Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.

Unlabelled: Cyanobacteria are ubiquitous aquatic organisms with a remarkable evolutionary history reaching as far as 1.9 Ga. They play a vital role in ecosystems yet also raise concerns due to their association with harmful algal blooms.

View Article and Find Full Text PDF

The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.

View Article and Find Full Text PDF

Rapid pesticide residues detection by portable filter-array hyperspectral imaging.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072 China. Electronic address:

The detection of pesticide residues in agricultural products is crucial for ensuring food safety. However, traditional methods are often constrained by slow processing speeds and a restricted analytical scope. This study presents a novel method that uses filter-array-based hyperspectral imaging enhanced by a dynamic filtering demosaicking algorithm, which significantly improves the speed and accuracy of detecting pesticide residues.

View Article and Find Full Text PDF

Significance: Machine learning models for the direct extraction of tissue parameters from hyperspectral images have been extensively researched recently, as they represent a faster alternative to the well-known iterative methods such as inverse Monte Carlo and inverse adding-doubling (IAD).

Aim: We aim to develop a Bayesian neural network model for robust prediction of physiological parameters from hyperspectral images.

Approach: We propose a two-component system for extracting physiological parameters from hyperspectral images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!