A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatial Spectral Band Selection for Enhanced Hyperspectral Remote Sensing Classification Applications. | LitMetric

Spatial Spectral Band Selection for Enhanced Hyperspectral Remote Sensing Classification Applications.

J Imaging

Defence Science and Technology Laboratory (DSTL), Space and Sensing Systems Group, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.

Published: August 2020

Despite the numerous band selection (BS) algorithms reported in the field, most if not all have exhibited maximal accuracy when more spectral bands are utilized for classification. This apparently disagrees with the theoretical model of the 'curse of dimensionality' phenomenon, without apparent explanations. If it were true, then BS would be deemed as an academic piece of research without real benefits to practical applications. This paper presents a spatial spectral mutual information (SSMI) BS scheme that utilizes a spatial feature extraction technique as a preprocessing step, followed by the clustering of the mutual information (MI) of spectral bands for enhancing the efficiency of the BS. Through the SSMI BS scheme, a sharp 'bell'-shaped accuracy-dimensionality characteristic that peaks at about 20 bands has been observed for the very first time. The performance of the proposed SSMI BS scheme has been validated through 6 hyperspectral imaging (HSI) datasets (Indian Pines, Botswana, Barrax, Pavia University, Salinas, and Kennedy Space Center (KSC)), and its classification accuracy is shown to be approximately 10% better than seven state-of-the-art BS schemes (Saliency, HyperBS, SLN, OCF, FDPC, ISSC, and Convolution Neural Network (CNN)). The present result confirms that the high efficiency of the BS scheme is essentially important to observe and validate the Hughes' phenomenon in the analysis of HSI data. Experiments also show that the classification accuracy can be affected by as much as approximately 10% when a single 'crucial' band is included or missed out for classification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321067PMC
http://dx.doi.org/10.3390/jimaging6090087DOI Listing

Publication Analysis

Top Keywords

ssmi scheme
12
spatial spectral
8
band selection
8
spectral bands
8
classification accuracy
8
accuracy 10%
8
classification
5
spectral band
4
selection enhanced
4
enhanced hyperspectral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!