The reconstruction of computed tomography (CT) images is an active area of research. Following the rise of deep learning methods, many data-driven models have been proposed in recent years. In this work, we present the results of a that we organized, bringing together algorithm experts from different institutes to jointly work on quantitative evaluation of several data-driven methods on two large, public datasets during a ten day sprint. We focus on two applications of CT, namely, low-dose CT and sparse-angle CT. This enables us to fairly compare different methods using standardized settings. As a general result, we observe that the deep learning-based methods are able to improve the reconstruction quality metrics in both CT applications while the top performing methods show only minor differences in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). We further discuss a number of other important criteria that should be taken into account when selecting a method, such as the availability of training data, the knowledge of the physical measurement model and the reconstruction speed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321320 | PMC |
http://dx.doi.org/10.3390/jimaging7030044 | DOI Listing |
PLoS One
January 2025
Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
In human activity-recognition scenarios, including head and entire body pose and orientations, recognizing the pose and direction of a pedestrian is considered a complex problem. A person may be traveling in one sideway while focusing his attention on another side. It is occasionally desirable to analyze such orientation estimates using computer-vision tools for automated analysis of pedestrian behavior and intention.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Biology, Emory University, Atlanta, GA 30322, United States.
Motivation: In silico functional annotation of proteins is crucial to narrowing the sequencing-accelerated gap in our understanding of protein activities. Numerous function annotation methods exist, and their ranks have been growing, particularly so with the recent deep learning-based developments. However, it is unclear if these tools are truly predictive.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA.
Postoperative facial nerve (FN) dysfunction is associated with a significant impact on the quality of life of patients and can result in psychological stress and disorders such as depression and social isolation. Preoperative prediction of FN outcomes can play a critical role in vestibular schwannomas (VSs) patient care. Several studies have developed machine learning (ML)-based models in predicting FN outcomes following resection of VS.
View Article and Find Full Text PDFTomography
December 2024
Department of Computer Engineering, Faculty of Engineering, Karabük University, Karabük 78050, Türkiye.
Unlabelled: Due to the increasing number of people working at computers in professional settings, the incidence of lumbar disc herniation is increasing.
Background/objectives: The early diagnosis and treatment of lumbar disc herniation is much more likely to yield favorable results, allowing the hernia to be treated before it develops further. The aim of this study was to classify lumbar disc herniations in a computer-aided, fully automated manner using magnetic resonance images (MRIs).
J Imaging
January 2025
Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
The current process of embryo selection in in vitro fertilization is based on morphological criteria; embryos are manually evaluated by embryologists under subjective assessment. In this study, a deep learning-based pipeline was developed to classify the viability of embryos using combined inputs, including microscopic images of embryos and additional features, such as patient age and developed pseudo-features, including a continuous interpretation of Istanbul grading scores by predicting the embryo stage, inner cell mass, and trophectoderm. For viability prediction, convolution-based transferred learning models were employed, multiple pretrained models were compared, and image preprocessing techniques and hyperparameter optimization via Optuna were utilized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!