FACS-Based Graph Features for Real-Time Micro-Expression Recognition.

J Imaging

Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia.

Published: November 2020

AI Article Synopsis

  • Several studies have focused on improving the accuracy of micro-expression recognition but often overlook the computational complexity, which makes real-time application costly.
  • The paper introduces a new feature extraction technique using 68-point landmarks guided by the Facial Action Coding System (FACS), allowing for the analysis of micro-expressions from a single input frame instead of requiring multiple frames.
  • The results show that this new approach achieves a recognition accuracy of up to 87.33% and processes each sample in just 2 milliseconds on a Xeon Processor E5-2650.

Article Abstract

Several studies on micro-expression recognition have contributed mainly to accuracy improvement. However, the computational complexity receives lesser attention comparatively and therefore increases the cost of micro-expression recognition for real-time application. In addition, majority of the existing approaches required at least two frames (i.e., onset and apex frames) to compute features of every sample. This paper puts forward new facial graph features based on 68-point landmarks using Facial Action Coding System (FACS). The proposed feature extraction technique (FACS-based graph features) utilizes facial landmark points to compute graph for different Action Units (AUs), where the measured distance and gradient of every segment within an AU graph is presented as feature. Moreover, the proposed technique processes ME recognition based on single input frame sample. Results indicate that the proposed FACS-baed graph features achieve up to 87.33% of recognition accuracy with F1-score of 0.87 using leave one subject out cross-validation on SAMM datasets. Besides, the proposed technique computes features at the speed of 2 ms per sample on Xeon Processor E5-2650 machine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321161PMC
http://dx.doi.org/10.3390/jimaging6120130DOI Listing

Publication Analysis

Top Keywords

graph features
16
micro-expression recognition
12
facs-based graph
8
proposed technique
8
features
6
recognition
5
graph
5
features real-time
4
real-time micro-expression
4
recognition studies
4

Similar Publications

Amino acids, as the fundamental constituents of proteins and enzymes, play a vital role in various biological processes. Amino acids such as histidine, cysteine, and methionine are known to coordinate with metal ions in proteins and enzymes, playing critical roles in their structure and function. In metalloproteins, metal ions are often coordinated by specific amino acid residues, contributing to the protein's stability and catalytic activity.

View Article and Find Full Text PDF

Understanding human behavior and human action recognition are both essential components of effective surveillance video analysis for the purpose of guaranteeing public safety. However, existing approaches such as three-dimensional convolutional neural networks (3D CNN) and two-stream neural networks (2SNN) have computational hurdles due to the significant parameterization they require. In this paper, we offer HARNet, a specialized lightweight residual 3D CNN that is built on directed acyclic graphs and was created expressly to handle these issues and achieve effective human action detection.

View Article and Find Full Text PDF

Background: Compound-protein interaction (CPI) is essential to drug discovery and design, where traditional methods are often costly and have low success rates. Recently, the integration of machine learning and deep learning in CPI research has shown potential to reduce costs and enhance discovery efficiency by improving protein target identification accuracy. Additionally, with an urgent need for novel therapies against complex diseases, CPI investigation could lead to the identification of effective new drugs.

View Article and Find Full Text PDF

The identification of cancer driver genes is crucial for understanding the complex processes involved in cancer development, progression, and therapeutic strategies. Multi-omics data and biological networks provided by numerous databases enable the application of graph deep learning techniques that incorporate network structures into the deep learning framework. However, most existing methods do not account for the heterophily in the biological networks, which hinders the improvement of model performance.

View Article and Find Full Text PDF

Background: The human brain is a complex inter-wired system that emerges spontaneous functional fluctuations. In spite of tremendous success in the experimental neuroscience field, a system-level understanding of how brain anatomy supports various neural activities remains elusive.

Method: Capitalizing on the unprecedented amount of neuroimaging data, we present a physics-informed deep model to uncover the coupling mechanism between brain structure and function through the lens of data geometry that is rooted in the widespread wiring topology of connections between distant brain regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!