Several studies on micro-expression recognition have contributed mainly to accuracy improvement. However, the computational complexity receives lesser attention comparatively and therefore increases the cost of micro-expression recognition for real-time application. In addition, majority of the existing approaches required at least two frames (i.e., onset and apex frames) to compute features of every sample. This paper puts forward new facial graph features based on 68-point landmarks using Facial Action Coding System (FACS). The proposed feature extraction technique (FACS-based graph features) utilizes facial landmark points to compute graph for different Action Units (AUs), where the measured distance and gradient of every segment within an AU graph is presented as feature. Moreover, the proposed technique processes ME recognition based on single input frame sample. Results indicate that the proposed FACS-baed graph features achieve up to 87.33% of recognition accuracy with F1-score of 0.87 using leave one subject out cross-validation on SAMM datasets. Besides, the proposed technique computes features at the speed of 2 ms per sample on Xeon Processor E5-2650 machine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321161 | PMC |
http://dx.doi.org/10.3390/jimaging6120130 | DOI Listing |
Sci Rep
January 2025
Department of Mathematics, College of Natural and Computational Sciences, Wollega University, Nekemte, Ethiopia.
Amino acids, as the fundamental constituents of proteins and enzymes, play a vital role in various biological processes. Amino acids such as histidine, cysteine, and methionine are known to coordinate with metal ions in proteins and enzymes, playing critical roles in their structure and function. In metalloproteins, metal ions are often coordinated by specific amino acid residues, contributing to the protein's stability and catalytic activity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical and Computer Engineering, Hawassa University, Hawassa 05, Ethiopia.
Understanding human behavior and human action recognition are both essential components of effective surveillance video analysis for the purpose of guaranteeing public safety. However, existing approaches such as three-dimensional convolutional neural networks (3D CNN) and two-stream neural networks (2SNN) have computational hurdles due to the significant parameterization they require. In this paper, we offer HARNet, a specialized lightweight residual 3D CNN that is built on directed acyclic graphs and was created expressly to handle these issues and achieve effective human action detection.
View Article and Find Full Text PDFComput Biol Chem
December 2024
School of Software, Henan Polytechnic University, Jiaozuo 454003, China. Electronic address:
Background: Compound-protein interaction (CPI) is essential to drug discovery and design, where traditional methods are often costly and have low success rates. Recently, the integration of machine learning and deep learning in CPI research has shown potential to reduce costs and enhance discovery efficiency by improving protein target identification accuracy. Additionally, with an urgent need for novel therapies against complex diseases, CPI investigation could lead to the identification of effective new drugs.
View Article and Find Full Text PDFBrief Bioinform
November 2024
School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China.
The identification of cancer driver genes is crucial for understanding the complex processes involved in cancer development, progression, and therapeutic strategies. Multi-omics data and biological networks provided by numerous databases enable the application of graph deep learning techniques that incorporate network structures into the deep learning framework. However, most existing methods do not account for the heterophily in the biological networks, which hinders the improvement of model performance.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: The human brain is a complex inter-wired system that emerges spontaneous functional fluctuations. In spite of tremendous success in the experimental neuroscience field, a system-level understanding of how brain anatomy supports various neural activities remains elusive.
Method: Capitalizing on the unprecedented amount of neuroimaging data, we present a physics-informed deep model to uncover the coupling mechanism between brain structure and function through the lens of data geometry that is rooted in the widespread wiring topology of connections between distant brain regions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!