A Fast Neutron Radiography System Using a High Yield Portable DT Neutron Source.

J Imaging

Adelphi Technology Inc., 2003 E. Bayshore Rd, Redwood City, CA 94063, USA.

Published: November 2020

Resolution measurements were made using 14.1 MeV neutrons from a high-yield, portable DT neutron generator and a neutron camera based on a scintillation screen viewed by a digital camera. Resolution measurements were made using a custom-built, plastic, USAF-1951 resolution chart, of dimensions 125 × 98 × 25.4 mm, and by calculating the modulation transfer function from the edge-spread function from edges of plastic and steel objects. A portable neutron generator with a yield of 3 × 10 n/s (DT) and a spot size of 1.5 mm was used to irradiate the object with neutrons for 10 min. The neutron camera, based on a LiF/ZnS:Cu-doped polypropylene scintillation screen and digital camera was placed at a distance of 140 cm, and produced an image with a spatial resolution of 0.35 cycles per millimeter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321213PMC
http://dx.doi.org/10.3390/jimaging6120128DOI Listing

Publication Analysis

Top Keywords

portable neutron
12
resolution measurements
8
neutron generator
8
neutron camera
8
camera based
8
scintillation screen
8
digital camera
8
neutron
5
fast neutron
4
neutron radiography
4

Similar Publications

Development of a CLYC-based wide dose rate range portable neutron-gamma detector.

Appl Radiat Isot

December 2024

State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China; Department of Modern Physics, University of Science and Technology of China, Hefei, 230026, China.

This paper describes the development of a portable neutron-gamma detector for environmental radiation monitoring based on the CLYC crystal. It can function as a gamma spectrometer, gamma dosimeter, and thermal neutron counter. The upper measurement limit of gamma dose rate is approximately 6 mSv/h by using the proposed current mode in CLYC crystal and PMT.

View Article and Find Full Text PDF

Plasma focus devices represent a class of hot and dense plasma sources that serve a dual role in fundamental plasma research and practical applications. These devices allow the observation of various phenomena, including the z-pinch effect, nuclear fusion reactions, plasma filaments, bursts, shocks, jets, X-rays, neutron pulses, ions, and electron beams. In recent years, considerable efforts have been directed toward miniaturizing plasma focus devices, driven by the pursuit of both basic studies and technological advancements.

View Article and Find Full Text PDF

Design of a compact and portable space neutron spectrometer based on Monte Carlo.

Appl Radiat Isot

December 2024

School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China. Electronic address:

With the rapid development of space exploration, the detection of space neutron radiation is becoming increasingly important. The currently widely used Bonner sphere spectrometer have drawbacks such as large size and weight, as well as low fault tolerance, when detecting space neutron spectra. This paper describes in detail a new type of space neutron spectrometer (SNS), which has two different specifications to adapt to the directional and non-directional neutron field environment, and can measure the directional neutron energy spectrum.

View Article and Find Full Text PDF

Electrolysis of DO may be used as a portable neutron source with numerous applications without the complexity of huge reactor operations. Herein, we report reproducible fast neutron generation by electrolysis of DO using palladium cathode and platinum anode, which was detected with diamond detector, gas filled He detectors after thermalisation with high density polythene, as well as novel epoxy resin and CR-39 detectors. Notably, a highly reproducible neutron generation at electrochemical surfaces of palladium electrode was observed and signature transmutation via Pd (d, n) Ag was corroborated.

View Article and Find Full Text PDF
Article Synopsis
  • Demand for computing power in major scientific experiments, like the CMS at CERN, is expected to significantly increase over the coming decades.
  • The implementation of coprocessors, particularly GPUs, in data processing workflows can enhance performance and efficiency, especially for machine learning tasks.
  • The Services for Optimized Network Inference on Coprocessors (SONIC) approach allows for improved use of coprocessors, demonstrating successful integration and acceleration of workflows across various environments without sacrificing throughput.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!