Reservoir computing has emerged as a powerful machine learning paradigm for harvesting nontrivial information processing out of disordered physical systems driven by sequential inputs. To this end, the system observables must become nonlinear functions of the input history. We show that encoding the input to quantum or classical fluctuations of a network of interacting harmonic oscillators can lead to a high performance comparable to that of a standard echo state network in several nonlinear benchmark tasks. This equivalence in performance holds even with a linear Hamiltonian and a readout linear in the system observables. Furthermore, we find that the performance of the network of harmonic oscillators in nonlinear tasks is robust to errors both in input and reservoir observables caused by external noise. For any reservoir computing system with a linear readout, the magnitude of trained weights can either amplify or suppress noise added to reservoir observables. We use this general result to explain why the oscillators are robust to noise and why having precise control over reservoir memory is important for noise robustness in general. Our results pave the way toward reservoir computing harnessing fluctuations in disordered linear systems.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2021.3105695DOI Listing

Publication Analysis

Top Keywords

reservoir computing
16
system observables
8
harmonic oscillators
8
reservoir observables
8
noise reservoir
8
reservoir
6
linear
5
high-performance reservoir
4
computing
4
computing fluctuations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!