Monoclonal Antibodies Opsonize spp. and Reduce Intracellular Actin Tail Formation in a Macrophage Infection Assay.

J Bacteriol

Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Salisbury, United Kingdom.

Published: October 2021

Melioidosis is a neglected tropical disease caused by the bacterium Burkholderia pseudomallei. The bacterium is intrinsically resistant to various antibiotics, and melioidosis is therefore difficult to treat successfully without a relapse in infection. B. pseudomallei is an intracellular pathogen and therefore, to eradicate the infection, antimicrobials must be able to access bacteria in an intracellular niche. This study assessed the ability of a panel of monoclonal antibodies (MAbs) to opsonize Burkholderia species and determine the effect that each antibody has on bacterial virulence . Murine macrophage infection assays demonstrated that monoclonal antibodies against the capsule of B. pseudomallei are opsonizing. Furthermore, one of these monoclonal antibodies reduced bacterial actin tail formation in our assays, indicating that antibodies could reduce the intracellular spread of Burkholderia thailandensis. The data presented in this paper demonstrate that monoclonal antibodies are opsonizing and can decrease bacterial actin tail formation, thus decreasing their intracellular spread. These data have informed selection of an antibody for development of an antibody-antibiotic conjugate (AAC) for melioidosis. Melioidosis is difficult to treat successfully due to the causal bacterium being resistant to many classes of antibiotics, therefore limiting available therapeutic options. New and improved therapies are urgently required to treat this disease. Here, we have investigated the potential of monoclonal antibodies to target this intracellular pathogen. We have demonstrated that monoclonal antibodies can target the bacterium, increase uptake into macrophages, and reduce actin tail formation required by the bacterium for spread between cells. Through targeting the bacterium with antibodies, we hope to disarm the pathogen, reducing the spread of infection. Ultimately, we aim to use an opsonizing antibody to deliver antibiotics intracellularly by developing an antibody-antibiotic conjugate therapeutic for melioidosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508110PMC
http://dx.doi.org/10.1128/JB.00244-21DOI Listing

Publication Analysis

Top Keywords

monoclonal antibodies
28
actin tail
16
tail formation
16
reduce intracellular
8
macrophage infection
8
melioidosis difficult
8
difficult treat
8
intracellular pathogen
8
antibodies
8
demonstrated monoclonal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!