An undecamer oligonucleotide probe based on a pair of deoxythymidines flanked by several modified nucleotides is a specific and highly efficient biosensor for micrococcal nuclease (MNase), an endonuclease produced by . Herein, the interaction mode and cleavage process on such oligonucleotide probes are identified and described for the first time. Also, we designed truncated pentamer probes as the minimum-length substrates required for specific and efficient biosensing. By means of computational (virtual docking) and experimental (ultra-performance liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization time-of-flight) techniques, we perform a sequence/structure-activity relationship analysis, propose a catalytically active substrate-enzyme complex, and elucidate a novel two-step phosphodiester bond hydrolysis mechanism, identifying the cleavage sites and detecting and quantifying the resulting probe fragments. Our results unravel a picture of both the enzyme-biosensor complex and a two-step cleavage/biosensing mechanism, key to the rational oligonucleotide design process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436206 | PMC |
http://dx.doi.org/10.1021/acs.jmedchem.1c00884 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!