Discoveries of the interfacial topological Hall effect (THE) provide an ideal platform for exploring the physics arising from the interplay between topology and magnetism. The interfacial topological Hall effect is closely related to the Dzyaloshinskii-Moriya interaction (DMI) at an interface and topological spin textures. However, it is difficult to achieve a sizable THE in heterostructures due to the stringent constraints on the constituents of THE heterostructures, such as strong spin-orbit coupling (SOC). Here, we report the observation of a giant THE signal of 1.39 μΩ·cm in the van der Waals heterostructures of CrTe/BiTe fabricated by molecular beam epitaxy, a prototype of two-dimensional (2D) ferromagnet (FM)/topological insulator (TI). This large magnitude of THE is attributed to an optimized combination of 2D ferromagnetism in CrTe, strong SOC in BiTe, and an atomically sharp interface. Our work reveals CrTe/BiTe as a convenient platform for achieving large interfacial THE in hybrid systems, which could be utilized to develop quantum science and high-density information storage devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c05519 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
Chiral magnetic textures give rise to unconventional magnetotransport phenomena such as the topological Hall effect and nonreciprocal electronic transport. While the correspondence between topology or symmetry of chiral magnetic structures and such transport phenomena has been well established, a microscopic understanding based on the spin-dependent band structure in momentum space remains elusive. Here, we demonstrate how a chiral magnetic superstructure introduces an asymmetry in the electronic band structure and triggers a nonreciprocal electronic transport in a centrosymmetric helimagnet α-EuP.
View Article and Find Full Text PDFNature
January 2025
Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada.
In a dilute two-dimensional electron gas, Coulomb interactions can stabilize the formation of a Wigner crystal. Although Wigner crystals are topologically trivial, it has been predicted that electrons in a partially filled band can break continuous translational symmetry and time-reversal symmetry spontaneously, resulting in a type of topological electron crystal known as an anomalous Hall crystal. Here we report signatures of a generalized version of the anomalous Hall crystal in twisted bilayer-trilayer graphene, whose formation is driven by the moiré potential.
View Article and Find Full Text PDFNature
January 2025
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Electrons in topological flat bands can form new topological states driven by correlation effects. The pentalayer rhombohedral graphene/hexagonal boron nitride (hBN) moiré superlattice was shown to host fractional quantum anomalous Hall effect (FQAHE) at approximately 400 mK (ref. ), triggering discussions around the underlying mechanism and role of moiré effects.
View Article and Find Full Text PDFQuantum materials governed by emergent topological fermions have become a cornerstone of physics. Dirac fermions in graphene form the basis for moiré quantum matter and Dirac fermions in magnetic topological insulators enabled the discovery of the quantum anomalous Hall (QAH) effect. By contrast, there are few materials whose electromagnetic response is dominated by emergent Weyl fermions.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.
The chiral edge current is the boundary manifestation of the Chern number of a quantum anomalous Hall (QAH) insulator. The van der Waals antiferromagnet MnBiTe is theorized to be a QAH in odd-layers but has shown Hall resistivity below the quantization value at zero magnetic field. Here, we perform scanning superconducting quantum interference device (sSQUID) microscopy on these seemingly failed QAH insulators to image their current distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!