Microscale Interfacial Polymerization on a Chip.

Angew Chem Int Ed Engl

IBM Research Europe-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Zurich, Switzerland.

Published: November 2021

Forming hydrogels with precise geometries is challenging and mostly done using photopolymerization, which involves toxic chemicals, rinsing steps, solvents, and bulky optical equipment. Here, we introduce a new method for in situ formation of hydrogels with a well-defined geometry in a sealed microfluidic chip by interfacial polymerization. The geometry of the hydrogel is programmed by microfluidic design using capillary pinning structures and bringing into contact solutions containing hydrogel precursors from vicinal channels. The characteristics of the hydrogel (mesh size, molecular weight cut-off) can be readily adjusted. This method is compatible with capillary-driven microfluidics, fast, uses small volumes of reagents and samples, and does not require specific laboratory equipment. Our approach creates opportunities for filtration, hydrogel functionalization, and hydrogel-based assays, as exemplified by a rapid, compact competitive immunoassay that does not require a rinsing step.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597160PMC
http://dx.doi.org/10.1002/anie.202110974DOI Listing

Publication Analysis

Top Keywords

interfacial polymerization
8
microscale interfacial
4
polymerization chip
4
chip forming
4
forming hydrogels
4
hydrogels precise
4
precise geometries
4
geometries challenging
4
challenging photopolymerization
4
photopolymerization involves
4

Similar Publications

Electric aircraft such as electric aircraft and electric vehicles play a key role in the future electric aviation industry, but they put forward huge requirements for battery energy density. However, the current high-energy-density lithium battery technology still needs to be broken through. Herein, through the molecular structure design of the polymer electrolyte, a strategy of a fast migration channel and wide electrochemical window is proposed to fabricate high-voltage-resistant solid polymer electrolyte (HVPE) via in situ polymerization.

View Article and Find Full Text PDF

Enhanced room temperature ammonia gas sensing based on a multichannel PSS-functionalized graphene/PANI network.

Analyst

January 2025

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, 516007, China.

Disordered polymerization of polymers widens the polymerization degree distribution, which leads to uncontrollable thickness and significantly weakens their sensing performance. Herein, poly(sodium -styrenesulfonate)-functionalized reduced graphene oxide (PSS-rGO) with multichannel chain structures coated with thin polyaniline layer (PSS-rGO/PANI) nanocomposites was synthesized a facile interfacial polymerization route. The morphology and microstructure of the PSS-rGO/PANI nanocomposites were characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Building electrode/electrolyte interphases in aqueous zinc batteries via self-polymerization of electrolyte additives.

Natl Sci Rev

January 2025

State Key Laboratory of Advanced Chemical Power Sources, Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.

Aqueous zinc batteries offer promising prospects for large-scale energy storage, yet their application is limited by undesired side reactions at the electrode/electrolyte interface. Here, we report a universal approach for the building of an electrode/electrolyte interphase (EEI) layer on both the cathode and the anode through the self-polymerization of electrolyte additives. In an exemplified Zn||VO·nHO cell, we reveal that the glutamate additive undergoes radical-initiated electro-polymerization on the cathode and polycondensation on the anode, yielding polyglutamic acid-dominated EEI layers on both electrodes.

View Article and Find Full Text PDF

Challenges and opportunities in 2D materials for high-performance aqueous ammonium ion batteries.

Natl Sci Rev

February 2025

Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.

Aqueous ammonium ion batteries (AAIBs) have attracted considerable attention due to their high safety and rapid diffusion kinetics. Unlike spherical metal ions, NH forms hydrogen bonds with host materials, leading to a unique storage mechanism. A variety of electrode materials have been proposed for AAIBs, but their performance often falls short in terms of future energy storage needs.

View Article and Find Full Text PDF

Titanium alloys are widely used in the manufacture of orthopedic prosthesis given their excellent mechanical properties and biocompatibility. However, the primary drawbacks of traditional titanium alloy prosthesis are their much higher elastic modulus than cancellous bone and poor interfacial adhesion, which lead to poor osseointegration. 3D-printed porous titanium alloys can partly address these issues, but their bio-inertness still requires modifications to adapt to different physiological and pathological microenvironments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!