Hypoxia-induced ROS promotes mitochondrial fission and cisplatin chemosensitivity via HIF-1α/Mff regulation in head and neck squamous cell carcinoma.

Cell Oncol (Dordr)

Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xin Songjia Road, Shanghai, 200025, China.

Published: October 2021

Purpose: Chemotherapy based on cisplatin (CDDP) has been established as the treatment of choice for head and neck squamous cell carcinoma (HNSCC). Malignant tumors respond to microenvironmental alterations through a dynamic balance between mitochondrial fission and fusion. HNSCCs are known to exhibit hypoxic conditions, yet the respective effects and underlying mechanisms of hypoxia on chemosensitivity and mitochondrial dynamics remain to be resolved.

Methods: The effect of hypoxia on the chemosensitivity of HNCC cells was determined by flow cytometry. Mitochondrial fission factor (Mff) expression was assessed by RT-PCR and Western blotting in hypoxic HNSCC cells, and further verified in primary CDDP-sensitive and CDDP-resistant HSNCC samples. The biological function of Mff was evaluated by loss of function and gain of function analyses, both in vitro and in vivo.

Results: We found that hypoxia promoted mitochondrial fission and CDDP sensitivity in HNSCC cells. Importantly, Mff was found to be correlated with chemosensitivity in primary clinical samples under hypoxic conditions. Hypoxia-inducible factor 1α (HIF-1α) was found to markedly increase Mff transcription and to directly bind to Mff. Hypoxia enhanced the release of reactive oxygen species (ROS) and upregulated the expression of Mff via HIF-1α in HNSCC cells. ROS depletion in HNSCC cells attenuated HIF-1α expression, Mff expression and mitochondrial fission. Moreover, Mff knockdown led to suppression of hypoxia-induced mitochondrial fission and to decreased CDDP chemosensitivity in vivo and in vitro.

Conclusions: Our findings indicate that hypoxia-induced release of ROS can promote mitochondrial fission and CDDP chemosensitivity via HIF1α/Mff regulation in HNSCC cells, indicating that Mff may serve as a biomarker to predict neoadjuvant chemosensitivity in HNSCC patients and as a target for overcoming chemoresistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13402-021-00629-6DOI Listing

Publication Analysis

Top Keywords

mitochondrial fission
28
hnscc cells
20
mff
9
mitochondrial
8
head neck
8
neck squamous
8
squamous cell
8
cell carcinoma
8
hypoxic conditions
8
hypoxia chemosensitivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!