Hypoxia in water that caused by reduced levels of oxygen occurred frequently, due to the complex aquatic environment. Hypoxia tolerance for fish depends on a complete set of coping mechanisms such as oxygen perception and gene-protein interaction regulation. The present study examined the short-term effects of hypoxia on the brain in Takifugu rubripes. We sequenced the transcriptomes of the brain in T. rubripes to study their response mechanism to acute hypoxia. A total of 167 genes were differentially expressed in the brain of T. rubripes after exposed to acute hypoxia. Gene ontology and KEGG enrichment analysis indicated that hypoxia could cause metabolic and neurological changes, showing the clues of their adaptation to acute hypoxia. As the most complex and important organ, the brain of T. rubripes might be able to create a self-protection mechanism to resist or reduce damage caused by acute hypoxia stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-021-01008-6DOI Listing

Publication Analysis

Top Keywords

acute hypoxia
20
brain rubripes
12
hypoxia
9
brain takifugu
8
takifugu rubripes
8
brain
5
rubripes
5
acute
5
comparative transcriptomic
4
transcriptomic analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!