Caenorhabditis elegans (C. elegans) has proven to be an excellent model for studying host-microbe interactions and the microbiome, especially in the context of the intestines. Recently, ecological sampling of wild Caenorhabditis nematodes has discovered a diverse array of associated microbes, including bacteria, viruses, fungi, and microsporidia. Many of these microbes have interesting colonization or infection phenotypes that warrant further study, but they are often unculturable. This protocol presents a method to enrich the desired intestinal microbes in C. elegans and related nematodes and reduce the presence of the many contaminating microbes adhering to the cuticle. This protocol involves forcing animals into the dauer stage of development and using a series of antibiotic and detergent washes to remove external contamination. As dauer animals have physiological changes that protect nematodes from harsh environmental conditions, any intestinal microbes will be protected from these conditions. But, for enrichment to work, the microbe of interest must be maintained when animals develop into dauers. When the animals leave the dauer stage, they are singly propagated into individual lines. F1 populations are then selected for desired microbes or infection phenotypes and against visible contamination. These methods will allow researchers to enrich unculturable microbes in the intestinal lumen, which make up part of the natural microbiome of C. elegans and intracellular intestinal pathogens. These microbes can then be studied for colonization or infection phenotypes and their effects on the host fitness.

Download full-text PDF

Source
http://dx.doi.org/10.3791/62937DOI Listing

Publication Analysis

Top Keywords

infection phenotypes
12
wild caenorhabditis
8
caenorhabditis nematodes
8
microbes
8
colonization infection
8
intestinal microbes
8
dauer stage
8
intestinal
5
selective cleaning
4
cleaning wild
4

Similar Publications

Multidrug resistance in the pathogenic fungus Candida glabrata is a growing global threat. Here, we study mechanisms of multidrug resistance in this pathogen. Exposure of C.

View Article and Find Full Text PDF

SAA3 deficiency exacerbates intestinal fibrosis in DSS-induced IBD mouse model.

Cell Death Discov

January 2025

Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.

Intestinal fibrosis, as a late-stage complication of inflammatory bowel disease (IBD), leads to bowel obstruction and requires surgical intervention, significantly lowering the quality of life of affected patients. SAA3, a highly conserved member of the serum amyloid A (SAA) apolipoprotein family in mice, is synthesized primarily as an acute phase reactant in response to infection, inflammation and trauma. An increasing number of evidence suggests that SAA3 exerts a vital role in the fibrotic process, even though the underlying mechanisms are not yet fully comprehended.

View Article and Find Full Text PDF

Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative Leishmaniasis therapy.

Microb Pathog

January 2025

Immunology lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India. Electronic address:

Introduction: Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes.

View Article and Find Full Text PDF

Exploring Bidirectional Causal Relationships between Antibody-Mediated Immune Responses to Infectious Agents and Systemic Lupus Erythematosus through Mendelian Randomization and Meta-Analyses.

Microb Pathog

January 2025

Department of Clinical Laboratory, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu Province, China. Electronic address:

Background: Previous investigations into the causal relationship between infections and systemic lupus erythematosus (SLE) have yielded controversial results. This study delves into the bidirectional causal relationships between various infectious agents and SLE, employing two-sample Mendelian randomization (MR) from an immunological perspective.

Methods: Utilizing genome-wide association study (GWAS) data for 46 antibody-mediated immune responses (AMIRs) to 13 pathogens and three distinct SLE datasets, we employed Bayesian Weighted MR (BWMR) and inverse variance weighted (IVW) methods to ascertain causal links, supplemented by meta-analysis to resolve inconsistencies.

View Article and Find Full Text PDF

As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!