Dyes are being increasingly utilized across the globe, but there is no appropriate method of bioremediation for their full mineralization from the environment. Laccases are key enzymes that help microbes to degrade dyes as well as their intermediate metabolites. Various dyes have been reported to be degraded by bacteria, but it is still unclear how these enzymes function during dye degradation. To effectively eradicate toxic dyes from the system, it is essential to understand the molecular function of enzymes. As a result, the interaction of laccase with different toxic dyes was investigated using molecular docking. Based on the highest binding energy we have screened ten dyes with positive interaction with laccase. Evaluating the MD simulation results, three out of ten dyes were more stable as potential targets for degradation by laccase of . As a result, subsequent research focused solely on the results of three substrates: pigment red, fuchsin base, and Sudan IV. Analysis of MD simulation revealed that pigments red 23, fuchsin base, and Sudan IV form hydrogen and hydrophobic bond as well as Vander Waals interactions with the active site of laccase to keep it stable in aqueous solution. The conformation of laccase is greatly altered by the inclusion of all three substrates in the active site. The MD simulation findings show that laccase complexes remain stable throughout the catalytic reaction. Therefore, this research provides a molecular understanding of laccase expression and its role in the bioremediation of the pigments red 23, fuchsin base, and Sudan IV.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2021.1971564DOI Listing

Publication Analysis

Top Keywords

red fuchsin
12
fuchsin base
12
base sudan
12
molecular docking
8
dyes
8
toxic dyes
8
interaction laccase
8
ten dyes
8
three substrates
8
pigments red
8

Similar Publications

Tartrate-resistant acid phosphatase (TRAP) staining is widely used to stain osteoclasts in histological bone sections. The red dye formed by the conventional TRAP enzymatic reaction using naphthol AS-MX (or AS-BI) phosphate and fast red-violet (or garnet) chromogens is readily soluble in alcohol or xylene and requires air-drying prior to cover slipping or the use of an aqueous mounting medium. However, the use of an aqueous mounting medium makes it difficult to store stained specimens for a long time.

View Article and Find Full Text PDF

A Magnetic Photocatalytic Composite Derived from Waste Rice Noodle and Red Mud.

Nanomaterials (Basel)

December 2024

College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.

This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment.

View Article and Find Full Text PDF

In this work, a comparison of the photocatalytic activity of free-standing Cu-based nanoparticle mixtures and spin-coated nanoparticle films under visible-light radiation is conducted. Herein, CuO, CuO-Cu, CuO-CuN-Cu, and CuN-Cu nanoparticle mixtures were successfully synthesized by a non-aqueous sol-gel route and then deposited on a glass substrate by spin-coating. The surface chemistry of the nanoparticles studied by X-ray photoelectron spectroscopy (XPS) allowed elucidating the nanoparticle synthesis mechanism.

View Article and Find Full Text PDF

Leuco-malachite green (LMG) and leuco-crystal violet (LCV) are widespread co-pollutants in aquatic products that pose a severe threat to human health. Therefore, it is urgent and challenging to develop rapid multiplex detection of LMG and LCV. Herein, the bispecific aptamer (A5b) for LMG and LCV was characterized.

View Article and Find Full Text PDF

Recently, biomass-derived carbon dots (CDs) and hydrochar have gained widespread attention for environmental remediation. However, hydrochar is commonly regarded as carbon waste (CW) generated in the manufacture of CDs, and only a few reports have focused on the simultaneous application of CW and CDs. Herein, we propose a sustainable zero-waste approach for efficient dye removal by incorporating CDs and CW into electrospun membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!