Collective Coordinate Model of Kink-Antikink Collisions in ϕ^{4} Theory.

Phys Rev Lett

Institute of Theoretical Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Kraków, Poland.

Published: August 2021

The fractal velocity pattern in symmetric kink-antikink collisions in ϕ^{4} theory is shown to emerge from a dynamical model with two effective moduli: the kink-antikink separation and the internal shape mode amplitude. The shape mode usefully approximates Lorentz contractions of the kink and antikink, and the previously problematic null vector in the shape mode amplitude at zero separation is regularized.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.071601DOI Listing

Publication Analysis

Top Keywords

shape mode
12
kink-antikink collisions
8
collisions ϕ^{4}
8
ϕ^{4} theory
8
mode amplitude
8
collective coordinate
4
coordinate model
4
model kink-antikink
4
theory fractal
4
fractal velocity
4

Similar Publications

Background: Cervical cancer is the fourth most common cancer worldwide in females. This occurs primarily due to the infection of high-risk Human Papilloma Virus (HPV), although in advanced stages it requires support from host cellular factors. BRN3A is one such host cellular factors, whose expression remains high in cervical cancers and upregulates tumorigenic HPV gene expression.

View Article and Find Full Text PDF

A symmetrical dual-D and dual-core single-mode fiber surface plasmon resonance (SPR) liquid sensor is designed for biological detection. The dual-core design optimizes the transmission path, improves the momentum matching between free electrons and photons, and facilitates bidirectional coupling, consequently amplifying the SPR effect and enabling sensitive monitoring of the refractive index changes of biological solutions. In this structure, a gold wire is placed in the middle of the polished surface of the double-D-shaped single-mode fiber (SMF) to produce high-quality free electrons and promote the mode-coupling excitation of the SPR effect.

View Article and Find Full Text PDF

Polarization-Independent High-Q Phase Gradient Metasurfaces.

Nano Lett

January 2025

Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Dielectric metasurfaces have emerged as an unprecedented platform for precise wavefront manipulation at subwavelength scales with nearly zero loss. When aiming at dynamic applications such as AR/VR and LiDAR, high-quality factor (high-Q) phase gradient metasurfaces have emerged as a way to boost weak light-material interactions in flat-optical components. However, resonant features are naturally tied to polarization, limiting devices to operating on a single polarization state, which reduces the efficiency and adaptability of wave-shaping.

View Article and Find Full Text PDF

Dual-driven biodegradable nanomotors for enhanced cellular uptake.

J Mater Chem B

January 2025

Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Polymer-Layered Optical Wearable (PLOW) for Healthcare Applications: Temperature and Stretching Monitoring.

ACS Appl Mater Interfaces

January 2025

Nanophotonics and Plasmonics Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India.

Thermal and stretching characteristics are crucial variables in healthcare, robotics, and human-machine interaction applications. Here, we present a single-mode fiber-based, balloon-shaped, single- and dual polymer-layered optical wearable (PLOW) system that can sense both temperature and stretching. These two types of PLOWs are compared in terms of their detection performance across all criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!