Background: Flexible flatfoot is associated with altered plantar pressure distribution, but it is not clear how muscle fatigue affects plantar pressure characteristics in flexible flatfoot and normal foot.

Objective: To investigate the effects of calf muscles fatigue on plantar pressure variables in flexible flatfoot and normal foot.

Methods: Twenty-five people with flexible flatfoot and twenty-five people with normal foot were included. The unilateral heel-rise test was used to induce calf muscles fatigue. Plantar pressure variables were collected during preferred walking immediately before and after fatigue. The two-way mixed-design ANOVA was used to determine the main effect of fatigue and the interaction between foot posture and fatigue.

Results: Fatigue caused medialization of the contact area under the forefoot and the maximum force under the heel and forefoot (p< 0.05). When examining the differences in the effects of fatigue between groups, the contact area under the medial heel increased with fatigue in flexible flatfoot but decreased in normal foot; moreover, the contact area and maximum force under the midfoot and the maximum force under the third metatarsal decreased with fatigue in flexible flatfoot but increased in normal foot (p< 0.05).

Conclusions: Calf muscles fatigue caused medialization of the maximum force and contact area. Especially the midfoot was affected differently by fatigue in flexible flatfoot and normal foot.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BMR-210069DOI Listing

Publication Analysis

Top Keywords

flexible flatfoot
32
plantar pressure
20
normal foot
20
calf muscles
16
muscles fatigue
16
contact area
16
maximum force
16
fatigue
12
fatigue plantar
12
flatfoot normal
12

Similar Publications

Enhanced diagnosis of pes planus and pes cavus using deep learning-based segmentation of weight-bearing lateral foot radiographs: a comparative observer study.

Biomed Eng Lett

January 2025

Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

Unlabelled: A weight-bearing lateral radiograph (WBLR) of the foot is a gold standard for diagnosing adult-acquired flatfoot deformity. However, it is difficult to measure the major axis of bones in WBLR without using auxiliary lines. Herein, we develop semantic segmentation with a deep learning model (DLm) on the WBLR of the foot for enhanced diagnosis of pes planus and pes cavus.

View Article and Find Full Text PDF

Purpose: The present study is to explore the appropriate plantar support force for its effect on improving the collapse of the medial longitudinal arch with flexible flatfoot.

Methods: A finite element model with the plantar fascia attenuation was constructed simulating as flexible flatfoot. The appropriate plantar support force was evaluated.

View Article and Find Full Text PDF

Background: Pes planus (flatfoot) and pes cavus (high arch foot) are common foot deformities, often requiring clinical and radiographic assessment for diagnosis and potential subsequent management. Traditional diagnostic methods, while effective, pose limitations such as cost, radiation exposure, and accessibility, particularly in underserved areas.

Aim: To develop deep learning algorithms that detect and classify such deformities using smartphone cameras.

View Article and Find Full Text PDF

Background: Pediatric flexible flatfoot (FFF) is a common condition characterized by the collapse of the medial longitudinal arch, which can lead to pain and functional impairment in a subset of patients. Subtalar arthroereisis (AR) is a minimally invasive procedure that corrects FFF by limiting excessive pronation of the subtalar joint. Two main techniques exist: endosinotarsal AR, which involves placing an implant in the sinus tarsi, and exosinotarsal AR, which uses a screw external to the sinus tarsi.

View Article and Find Full Text PDF

Although the connection between muscular strength and flatfoot condition is well-established, the impact of corrective exercises on these muscles remains inadequately explored. This study aimed to assess the impact of intrinsic- versus extrinsic-first corrective exercise programs on muscle morphometry and navicular drop in boys with flexible flatfoot. Twenty-five boys aged 10-12 with flexible flatfoot participated, undergoing a 12-week corrective exercise program, with a shift in focus at six weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!